987 resultados para orbital magnetization


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a constructive control design for stabilization of non-periodic trajectories of underactuated robots. An important example of such a system is an underactuated "dynamic walking" biped robot traversing rough or uneven terrain. The stabilization problem is inherently challenging due to the nonlinearity, open-loop instability, hybrid (impact) dynamics, and target motions which are not known in advance. The proposed technique is to compute a transverse linearization about the desired motion: a linear impulsive system which locally represents "transversal" dynamics about a target trajectory. This system is then exponentially stabilized using a modified receding-horizon control design, providing exponential orbital stability of the target trajectory of the original nonlinear system. The proposed method is experimentally verified using a compass-gait walker: a two-degree-of-freedom biped with hip actuation but pointed stilt-like feet. The technique is, however, very general and can be applied to a wide variety of hybrid nonlinear systems. © The Author(s) 2011.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large grain, bulk Y-Ba-Cu-O (YBCO) high temperature superconductors (HTS) have significant potential for use in a variety of practical applications that incorporate powerful quasi-permanent magnets. In the present work, we investigate how the trapped field of such magnets can be improved by combining bulk YBCO with a soft FeNi, ferromagnetic alloy. This involves machining the alloy into components of various shapes, such as cylinders and rings, which are attached subsequently to the top surface of a solid, bulk HTS cylinder. The effect of these modifications on the magnetic hysteresis curve and trapped field of the bulk superconductor at 77 K are then studied using pick-up coil and Hall probe measurements. The experimental data are compared to finite element modelling of the magnetic flux distribution using Campbell's algorithm. Initially we establish the validity of the technique involving pick-up coils wrapped around the bulk superconductor to obtain its magnetic hysteresis curve in a non-destructive way and highlight the difference between the measured signal and the true magnetization of the sample. We then consider the properties of hybrid ferromagnet/superconductor (F/S) structures. Hall probe measurements, together with the results of the model, establish that flux lines curve outwards through the ferromagnet, which acts, effectively, like a magnetic short circuit. Magnetic hysteresis curves show that the effects of the superconductor and the ferromagnet simply add when the ferromagnet is saturated fully by the applied field. The trapped field of the hybrid structure is always larger than that of the superconductor alone below this saturation level, and especially when the applied field is removed. The results of the study show further that the beneficial effects on the trapped field are enhanced when the ferromagnet covers the entire surface of the superconductor for different ferromagnetic components of various shapes and fixed volume. © 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The octanol-air partition coefficient (K-OA) is a key descriptor of chemicals partitioning between the atmosphere and environmental organic phases. Quantitative structure-property relationships (QSPR) are necessary to model and predict KOA from molecular structures. Based on 12 quantum chemical descriptors computed by the PM3 Hamiltonian, using partial least squares (PLS) analysis, a QSPR model for logarithms of K-OA to base 10 (log K-OA) for polychlorinated naphthalenes (PCNs), chlorobenzenes and p,p'-DDT was obtained. The cross-validated Q(cum)(2) value of the model is 0.973, indicating a good predictive ability of the model. The main factors governing log K-OA of the PCNs, chlorobenzenes, and p,p'-DDT are, in order of decreasing importance, molecular size and molecular ability of donating/accepting electrons to participate in intermolecular interactions. The intermolecular dispersive interactions play a leading role in governing log K-OA. The more chlorines in PCN and chlorobenzene molecules, the greater the log K-OA values. Increasing E-LUMO (the energy of the lowest unoccupied molecular orbital) of the molecules leads to decreasing log K-OA values, implying possible intermolecular interactions between the molecules under study and octanol molecules. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A concise quantitative model that incorporates information on both environmental temperature M and molecular structures, for logarithm of octanol-air partition coefficient (K-OA) to base 10 (logK(OA)) of PCDDs, was developed. Partial least squares (PLS) analysis together with 14 quantum chemical descriptors were used to develop the quantitative relationships between structures, environmental temperatures and properties (QRSETP) model. It has been validated that the obtained QRSETP model can be used to predict logK(OA) of other PCDDs. Molecular size, environmental temperature (T), q(+) (the most positive net atomic charge on hydrogen or chlorine atoms in PCDD molecules) and E-LUMO (the energy of the lowest unoccupied molecular orbital) are main factors governing logK(OA) of PCDD/Fs under study. The intermolecular dispersive interactions and thus the size of the molecules play a leading role in governing logK(OA). The more chlorines in PCDD molecules, the greater the logK(OA) values. Increasing E-LUMO values of the molecules leads to decreasing logK(OA) values, implying possible intermolecular interactions between the molecules under study and octanol molecules. Greater q(+) values results in greater intermolecular electrostatic repulsive interactions between PCDD and octanol molecules and smaller logK(OA) values. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on nine quantum chemical descriptors computed by PM3 Hamiltonian, using partial least squares analysis, a significant quantitative structure-property relationship for the logarithm of octanol-air partition coefficients (log K-OA) of polychlorinated biphenyls (PCBs) was obtained. The cross-validated Q(cum)(2) value of the model is 0.962, indicating a good predictive ability. The intermolecular dispersive interactions and thus the size of the PCB molecules play a key role in governing log K-OA. The greater the size of PCB molecules, the greater the log K-OA values. Increasing E-LUMO (the energy of the lowest unoccupied molecular orbital) values of the PCBs leads to decreasing log K-OA values, indicating possible interactions between PCB and octanol molecules. Increasing Q(Cl)(+) (the most positive net atomic charges on a chlorine atom) and Q(C)(-) (the largest negative net atomic charge on a carbon atom) values of PCBs results in decreasing log K-OA values, implying possible intermolecular electrostatic interactions between octanol and PCB molecules. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By the use of partial least squares (PLS) method and 27 quantum chemical descriptors computed by PM3 Hamiltonian, a statistically significant QSPR were obtained for direct photolysis quantum yields (Y) of selected Polychlorinated dibenzo-p-dioxins (PCDDs). The QSPR can be used for prediction. The direct photolysis quantum yields of the PCDDs are dependent on the number of chlorine atoms bonded with the parent structures, the character of the carbon-oxygen bonds, and molecular polarity. Increasing bulkness and polarity of PCDDs lead to decrease of log Y values. Increasing the frontier molecular orbital energies (E-lumo and E-homo) and heat of formation (HOF) values leads to increase of log Y values. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, by the use of partial least squares (PLS) method and 26 quantum chemical descriptors computed by PM3 Hamiltonian, a quantitative structure-property relationship (QSPR) model was developed for reductive dehalogenation rate constants of 13 halogenated aliphatic compounds in sediment slurry under anaerobic conditions. The model can be used to explain the dehalogenation mechanism. Halogenated aliphatic compounds with great energy of the lowest unoccupied molecular orbital (E-lumo), total energy (TE), electronic energy (EE), the smallest bond order of the carbon-halogen bonds (BO) and the most positive net atomic charges on an atom of the molecule (q(+)) values tend to be reductively dehalogenated slow, whereas halogenated aliphatic compounds with high values of molecular weight (Mw), average molecular polarizability (a) and core-core repulsion energy (CCR) values tend to be reductively dehalogenated fastest. (C) 2001 Published by Elsevier Science Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have performed a systematic first-principles investigation to calculate the electronic structures, mechanical properties, and phonon-dispersion curves of NpO2. The local-density approximation+U and the generalized gradient approximation+U formalisms have been used to account for the strong on-site Coulomb repulsion among the localized Np 5f electrons. By choosing the Hubbard U parameter around 4 eV, the orbital occupancy characters of Np 5f and O 2p are in good agreement with recent experiments [A. Seibert, T. Gouder, and F. Huber, J. Nucl. Mater. 389, 470 (2009)]. Comparing to our previous study of ThO2, we note that stronger covalency exists in NpO2 due to the more localization behavior of 5f electrons of Np in line with the localization-delocalization trend exhibited by the actinides series.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using first-principles band structure methods, we investigate the interactions between different donors in In2O3. Through the formation energy and transition energy level calculations, we find that an oxygen-vacancy creates a deep donor level, while an indium-interstitial or a tin-dopant induces a shallow donor level. The coupling between these donor levels gives rise to even shallower donor levels and leads to a significant reduction in their formation energies. Based on the analysis of the PBE0-corrected band structure and the molecular-orbital bonding diagram, we demonstrate these effects of donor-donor binding. In addition, total energy calculations show that these defect pairs tend to be more stable with respect to the isolated defects due to their negative binding energies. Thus, we may design shallow donor levels to enhance the electrical conductivity via the donor donor binding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We perform first-principles calculations of electronic structure and optical properties for UO2 and PuO2 based on the density functional theory using the generalized gradient approximation (GGA) + U scheme. The main features in orbital-resolved partial density of states for occupied f and p orbitals, unoccupied d orbitals, and related gaps are well reproduced compared to experimental observations. Based on the satisfactory ground-state electronic structure calculations, the dynamical dielectric function and related optical spectra, i.e., the reflectivity, adsorption coefficient, energy-loss, and refractive index spectrum, are obtained. These results are consistent with the available experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ga1-xMnxAs films with exceptionally high saturation magnetizations of approximate to 100 emu/cm(3) corresponding to effective Mn concentrations of x(eff)approximate to 0.10 still have a Curie temperature T-C smaller than 195 K contradicting mean-field predictions. The analysis of the critical exponent beta of the remnant magnetization-beta = 0.407(5)-in the framework of the models for disordered/amorphous ferromagnets suggests that this limit on T-C is intrinsic and due to the short range of the ferromagnetic interactions resulting from the small mean-free path of the holes. This result questions the perspective of room-temperature ferromagnetism in highly doped GaMnAs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report variations in structure and magnetic property of (Ga,Cr) As films with increasing Cr content x. Due to phase segregation, a tendency towards inhomogeneous distribution with increasing x is confirmed. Barkhausen-like magnetization and large remanent magnetic moment were also clearly observed in the samples with x<5.3%. However, spin-glass-like behaviors were observed in both dc and ac magnetic measurements, which might originate from the competition between magnetic nucleation and frustration of long ferromagnetic order in this inhomogeneous system. All the samples exhibit characteristics of variable-range hopping conductivity at temperature below 150 K. Typical magnetic circular dichroism structure was observed in the sample with x=7.9%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated the domain wall resistance for two types of domain walls in a (Ga,Mn)As Hall bar with perpendicular magnetization. A sizeable positive intrinsic DWR is inferred for domain walls that are pinned at an etching step, which is quite consistent with earlier observations. However, much lower intrinsic domain wall resistance is obtained when domain walls are formed by pinning lines in unetched material. This indicates that the spin transport across a domain wall is strongly influenced by the nature of the pinning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a study of magnetic anisotropy by using magneto-transport and direct magnetization measurements on tensile strained (Ga,Mn)As films. The magnetic easy axis of the films is in-plane at low temperatures, while the easy axis flips to out-of-plane when temperature is raised or hole concentration is increased. This easy axis reorientation is explained qualitatively in a simple physical picture by Zeners pd model. In addition, the magneto-crystalline anisotropic resistance was also investigated experimentally and theoretically based on the single magnetic domain model. The dependence of sheet resistance on the angle between the magnetic field and [1 0 0] direction was measured. It is found that the magnetization vector M in the single-domain state deviates from the external magnetic field H direction at low magnetic field, while for high magnetic field, M continuously moves following the field direction, which leads to different resistivity function behaviors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study quantum oscillations of the magnetization in Bi2Se3 (111) surface system in the presence of a perpendicular magnetic field. The combined spin-chiral Dirac cone and Landau quantization produce profound effects on the magnetization properties that are fundamentally different from those in the conventional semiconductor two-dimensional electron gas. In particular, we show that the oscillating center in the magnetization chooses to pick up positive or negative values depending on whether the zero-mode Landau level is occupied or empty. An intuitive analysis of these features is given and the subsequent effects on the magnetic susceptibility and Hall conductance are also discussed.