972 resultados para laserspectroscopy, laser systems, beryllium, nuclear charge radius, isotope shift measurement
Resumo:
Model Hamiltonians have been, and still are, a valuable tool for investigating the electronic structure of systems for which mean field theories work poorly. This review will concentrate on the application of Pariser–Parr–Pople (PPP) and Hubbard Hamiltonians to investigate some relevant properties of polycyclic aromatic hydrocarbons (PAH) and graphene. When presenting these two Hamiltonians we will resort to second quantisation which, although not the way chosen in its original proposal of the former, is much clearer. We will not attempt to be comprehensive, but rather our objective will be to try to provide the reader with information on what kinds of problems they will encounter and what tools they will need to solve them. One of the key issues concerning model Hamiltonians that will be treated in detail is the choice of model parameters. Although model Hamiltonians reduce the complexity of the original Hamiltonian, they cannot be solved in most cases exactly. So, we shall first consider the Hartree–Fock approximation, still the only tool for handling large systems, besides density functional theory (DFT) approaches. We proceed by discussing to what extent one may exactly solve model Hamiltonians and the Lanczos approach. We shall describe the configuration interaction (CI) method, a common technology in quantum chemistry but one rarely used to solve model Hamiltonians. In particular, we propose a variant of the Lanczos method, inspired by CI, that has the novelty of using as the seed of the Lanczos process a mean field (Hartree–Fock) determinant (the method will be named LCI). Two questions of interest related to model Hamiltonians will be discussed: (i) when including long-range interactions, how crucial is including in the Hamiltonian the electronic charge that compensates ion charges? (ii) Is it possible to reduce a Hamiltonian incorporating Coulomb interactions (PPP) to an 'effective' Hamiltonian including only on-site interactions (Hubbard)? The performance of CI will be checked on small molecules. The electronic structure of azulene and fused azulene will be used to illustrate several aspects of the method. As regards graphene, several questions will be considered: (i) paramagnetic versus antiferromagnetic solutions, (ii) forbidden gap versus dot size, (iii) graphene nano-ribbons, and (iv) optical properties.
Resumo:
Una técnica experimental de creciente interés en la comunidad internacional es la relaxometría magnética nuclear, la cual posee un amplio campo de aplicabilidad en la industria farmacéutica, alimentaria, petrofísica, caucho, cosmética y plástico, entre otras. Actualmente se desarrolla en el LaRTE (Laboratorio de Relaxometría y Técnicas Especiales) un prototipo alfa de un instrumento unico de resonancia magnética nuclear con campo magnético ciclado, que permitirá no solamente realizar estudios relaxométricos en muestras de hasta 35cm3, sino que posibilitará la obtención de imágenes y mediciones de difusión a diferentes valores de campo. El corazón de este aparato es un electroimán particular logrado con tecnología propia, el cual posee excelentes características al compararlo con el estado del arte. Este logro da sustento al desarrollo en marcha, el cual será posiblemente transferido a una empresa espín-off del laboratorio (Trovintek Advanced Magnetic Systems) en el futuro para un desarrollo beta. En esta dirección, este proyecto propone profundizar el desarrollo de los imanes logrados, tratando de alcanzar sistemas reconfigurables adaptivos según las características del campo requerido y según demande la aplicación (homogeneidad, velocidad de conmutación e intensidad). A su vez, estos mismos sistemas de imanes prometen excelente aplicabilidad en el campo de la metrología magnética, dirección en la cual el LaRTE ya ha comenzado a trabajar conjuntamente con la Unidad Técnica Electrónica del INTI (Córdoba). Dichos electroimanes pueden devenir, en si mismos, en dispositivos especialmente diseñados para tal aplicación.
Resumo:
Research on the impact of innovation on regional economic performance in Europe has fundamentally followed three approaches: a) the analysis of the link between investment in R&D, patents, and economic growth; b) the study of the existence and efficiency of regional innovation systems; and c) the examination of geographical diffusion of regional knowledge spillovers. These complementary approaches have, however, rarely been combined. Important operational and methodological barriers have thwarted any potential cross-fertilization. In this paper, we try to fill this gap in the literature by combining in one model R&D, spillovers, and innovation systems approaches. A multiple regression analysis is conducted for all regions of the EU-25, including measures of R&D investment, proxies for regional innovation systems, and knowledge and socio-economic spillovers. This approach allows us to discriminate between the influence of internal factors and external knowledge and institutional flows on regional economic growth. The empirical results highlight how the interaction between local and external research with local and external socioeconomic and institutional conditions determines the potential of every region in order to maximise its innovation capacity. They also indicate the importance of proximity for the transmission of economically productive knowledge, as spillovers show strong distance decay effects. In the EU-25 context, only the innovative efforts pursued within a 180 minute travel radius have a positive and significant impact on regional growth performance.
Resumo:
Summary. On 11 March 2011, a devastating earthquake struck Japan and caused a major nuclear accident at the Fukushima Daiichi nuclear plant. The disaster confirmed that nuclear reactors must be protected even against accidents that have been assessed as highly unlikely. It also revealed a well-known catalogue of problems: faulty design, insufficient back-up systems, human error, inadequate contingency plans, and poor communications. The catastrophe triggered the rapid launch of a major re-examination of nuclear reactor security in Europe. It also stopped in its tracks what had appeared to be a ‘nuclear renaissance’, both in Europe and globally, especially in the emerging countries. Under the accumulated pressure of rising demand and climate warming, many new nuclear projects had been proposed. Since 2011 there has been more ambivalence, especially in Europe. Some Member States have even decided to abandon the nuclear sector altogether. This Egmont Paper aims to examine the reactions of the EU regarding nuclear safety since 2011. Firstly, a general description of the nuclear sector in Europe is provided. The nuclear production of electricity currently employs around 500,000 people, including those working in the supply chain. It generates approximately €70 billion per year. It provides roughly 30% of the electricity consumed in the EU. At the end of 2013, there were 131 nuclear power reactors active in the EU, located in 14 countries. Four new reactors are under construction in France, Slovakia and Finland. Secondly, this paper will present the Euratom legal framework regarding nuclear safety. The European Atomic Energy Community (EAEC or Euratom) Treaty was signed in 1957, and somewhat obscured by the European Economic Community (EEC) Treaty. It was a more classical treaty, establishing institutions with limited powers. Its development remained relatively modest until the Chernobyl catastrophe, which provoked many initiatives. The most important was the final adoption of the Nuclear Safety Directive 2009/71. Thirdly, the general symbiosis between Euratom and the International Atomic Energy Agency (IAEA) will be explained. Fourthly, the paper analyses the initiatives taken by the EU in the wake of the Fukushima catastrophe. These initiatives are centred around the famous ‘stress tests’. Fifthly, the most important legal change brought about by this event was the revision of Directive 2009/71. Directive 2014/87 has been adopted quite rapidly, and has deepened in various ways the role of the EU in nuclear safety. It has reinforced the role and effective independence of the national regulatory authorities. It has enhanced transparency on nuclear safety matters. It has strengthened principles, and introduced new general nuclear safety objectives and requirements, addressing specific technical issues across the entire life cycle of nuclear installations, and in particular, nuclear power plants. It has extended monitoring and the exchange of experiences by establishing a European system of peer reviews. Finally, it has established a mechanism for developing EU-wide harmonized nuclear safety guidelines. In spite of these various improvements, Directive 2014/87 Euratom still reflects the ambiguity of the Euratom system in general, and especially in the field of nuclear safety. The use of nuclear energy remains controversial among Member States. Some of them remain adamantly in favour, others against or ambivalent. The intervention of the EAEC institutions remains sensitive. The use of the traditional Community method remains limited. The peer review method remains a very peculiar mechanism that deserves more attention.
Resumo:
SIMS analyses have been carried out on clinopyroxenes, plagioclases and amphiboles of six gabbroic samples from Holes 921-924 of the Ocean Drilling Program Leg 153 sited in the MARK area of the Mid-Atlantic Ridge at the ridge-transform intersection, to investigate the rare earth, trace and volatile element distribution in the lower ocean crust during igneous crystallization and higher grade metamorphic conditions. The metagabbros underwent granulite to subgreenschist facies conditions through three main tectono-metamorphic phases: (1) ductile regime (750 < T < 1000 °C and P = 0.3 GPa); (2) transitional regime (600 < T < 700 °C and P = 0.2 GPa); (3) brittle regime (350 < T < 600 °C and P < 0.2 GPa). Igneous clinopyroxenes show Cl-chondrite normalized patterns depleted in LREE, and nearly flat for HREE. The rare earth and trace element distributions in igneous clinopyroxenes and plagioclases indicate that these minerals act as REE reservoirs, and comprise the main contribution to the overall rock content. The abundances in igneous minerals reflect the degree of fractionation of the parent liquids. In metamorphic clinopyroxenes recrystallized in anhydrous assemblages, the REE and trace elements patterns mimic those of the primary ones. Conversely, clinopyroxerie re-equilibrated in amphibolebearing assemblages shows a significant increase in REE, Ti, Zr, Y and V, a negative Eu anomaly, and slight decreases in Sr and Ba. An overall increase of REE and some trace elements is evident in hydrous assemblages, with preferential partitioning in the amphibole. It shows high Ti (18196-22844 ppm), LREE depleted patterns and LaN/SmN = 0.10-0.33, LaN/YbN = 0.10-0.30. Amphiboles from granoblastic assemblages show homogeneous patterns with no or a positive anomaly for TiN and negative anomalies for SrN and ZrN. Volatiles in amphibole are low, with Cl/F < 1; H2O% is significantly lower than the stoichiometric ratio (1.33-1.53%). The composition of the clinopyroxene and amphibole recrystallized in low-strain domains records evidence of incomplete re-equilibration, and element diffusion and partitioning is in part controlled by the textural site. The possible origins of the fluids involved in the metamorphic recrystallization are discussed: (1) remobilization from igneous amphibole; (2) exsolution from evolved melts; (3) introduction of seawater-derived fluids modified in rock-dominated systems; (4) injection of highly evolved hydrous melts during the metamorphic process.
Resumo:
Surface currents and sediment distribution of the SE South American upper continental margin are under influence of the South American Monsoon System (SAMS) and the Southern Westerly Wind Belt (SWWB). Both climatic systems determine the meridional position of the Subtropical Shelf Front (STSF) and probably also of the Brazil-Malvinas Confluence (BMC). We reconstruct the changing impact of the SAMS and the SWWB on sediment composition at the upper Rio Grande Cone off southern Brazil during the last 14 cal kyr combining sedimentological, geochemical, micropaleontological and rock magnetic proxies of marine sediment core GeoB 6211-2. Sharp reciprocal changes in ferri- and paramagnetic mineral content and prominent grain-size shifts give strong clues to systematic source changes and transport modes of these mostly terrigenous sediments. Our interpretations support the assumption that the SAMS over SE South America was weaker than today during most of the Late Glacial and entire Early Holocene, while the SWWB was contracted to more southern latitudes, resembling modern austral summer-like conditions. In consequence, the STSF and the BMC were driven to more southern positions than today's, favoring the deposition of Fe-rich but weakly magnetic La Plata River silts at the Rio Grande Cone. During the Mid Holocene, the northern boundary of the SWWB migrated northward, while the STSF reached its northernmost position of the last 14 cal kyr and the BMC most likely arrived at its modern position. This shift enabled the transport of Antarctic diatoms and more strongly magnetic Argentinean shelf sands to the Rio Grande Cone, while sediment contributions from the La Plata River became less important. During the Late Holocene, the modern El Niño Southern Oscillation set in and the SAMS and the austral tradewinds intensified, causing a southward shift of the STSF to its modern position. This reinforced a significant deposition of La Plata River silts at the Rio Grande Cone. These higher magnetic silts with intermediate Fe contents mirror the modern more humid terrestrial climatic conditions over SE South America.
Resumo:
Changes in surface water hydrography in the Southern Ocean (eastern Atlantic sector) could be reconstructed on the basis of isotope-geochemical and micropaleontological studies. A total of 75 high quality multicorer sediment surface samples from the southern South Atlantic Ocean and three Quaternary sediment cores, taken on a meridional transect across the Antarctic Circumpolar Current, have been investigated. The results of examining stable oxygen isotope compositions of 24 foraminiferal species and morphotypes were compared to the near-surface hydrography. The different foraminifera have been divided into four groups living at different depths in the upper water column. The 8180 differences between shallow-living (e.g. G. bulloides, N. pachyderma) and deeper-dwelling (e. g. G. inflata) species reflect the measured temperature gradient of the upper 250 m in the water column. Thus, the 6180 difference between shallow-living and deeper-living foraminifera can be used as an indicator for the vertical temperature gradient in the surface water of the Antarctic Circumpolar Current, which is independent of ice volume. All planktonic foraminifera in the surface sediment samples have been counted. 27 species and morphotypes have been selected, to form a reference data Set for statistical purposes. By using R- and Q-mode principal component analysis these planktonic foraminifera have been divided into four and five assemblages, respectively. The geographic distribution of these assemblages is mainly linked to the temperature of sea-surface waters. The five assemblages (factors) of the Q-mode principal component analysis account for 97.l % of the variance of original data. Following the transferfunction- technique a multiple regression between the Q-mode factors and the actual mean sea-surface environmental parameters resulted in a set of equations. The new transfer function can be used to estimate past sea-surface seasonal temperatures for paleoassemblages of planktonic foraminifera with a precision of approximately ±1.2°C. This transfer function F75-27-5 encompasses in particular the environmental conditions in the Atlantic sector of the Antarctic Circumpolar Current. During the last 140,000 years reconstructed sea-surface temperatures fluctuated in the present northern Subantarctic Zone (PS2076-1/3) at an amplitude of up to 7.5°C in summer and of up to 8.5°C in winter. In the present Polarfrontal Zone (PS1754-1) these fluctuations between glacials and interglacials show lower temperatures from 2.5 to 8.5°C in summer and from 1.0 to 5.0°C in winter, respectively. Compared to today, calculated oxygen isotope temperature gradients in the present Subantarctic Zone were lower during the last 140,000 years. This is an indicator for a good mixing of the upper water column. In the Polarfrontal Zone also lower oxygen isotope temperature gradients were found for the glacials 6, 4 and 2. But almost similar temperature gradients as today were found during the interglacial stages 5, 3 and the Holocene, which implicates a mixing of the upper water column compared to present. Paleosalinities were reconstructed by combining d18O-data and the evaluated transfer function paleotemperatures. Especially in the present Polarfrontal Zone (PS1754-1) and in the Antarctic Zone (PS1768-8), a short-term reduction of salinity up to 4 %o, could be detected. This significant reduction in sea-surface water salinity indicates the increased influx of melt-water at the beginning of deglaciation in the southern hemisphere at the end of the last glacial, approximately 16,500-13,000 years ago. The reconstruction of environmental Parameters indicates only small changes in the position of the frontal Systems in the eastern sector of the Antarctic Circumpolar Current during the last 140,000 years. The average position of the Subtropical Front and Subantarctic Front shifted approximately three latitudes between interglacials and glacials. The Antarctic Polar Front shifted approximately four latitudes. But substantial modifications of this scenario have been interpreted for the reconstruction of cold sea-surface temperatures at 41Â S during the oxygen isotope stages 16 and 14 to 12. During these times the Subtropical Front was probably shified up to seven latitudes northwards.
Resumo:
The process of fluid release from the subducting slab beneath the Izu arc volcanic front (Izu VF) was examined by measuring B concentrations and B isotope ratios in the Neogene fallout tephra (ODP Site 782A). Both were measured by secondary ion mass spectrometry, in a subset of matrix glasses and glassy plagioclase-hosted melt inclusions selected from material previously analyzed for major and trace elements (glasses) and radiogenic isotopes (Sr, Nd, Pb; bulk tephra). These tephra glasses have high B abundances (~10-60 ppm) and heavy delta11B values (+4.5? to +12.0?), extending the previously reported range for Izu VF rocks (delta11B, +7.0? to +7.3?). The glasses show striking negative correlations of delta11B with large ion lithophile element (LILE)/Nb ratios. These correlations cannot be explained by mixing two separate slab fluids, originating from the subducting sediment and the subducting basaltic crust, respectively (model A). Two alternative models (models B and C) are proposed. Model B proposes that the inverse correlations are inherited from altered oceanic crust (AOC), which shows a systematic decrease of B and LILE with increasing depth (from basaltic layer 2A to layer 3), paralleled by an increase in delta11B (from ~ +1? to +10? to +24?). In this model, the contribution of sedimentary B is insignificant (<4% of B in the Izu VF rocks). Model C explains the correlation as a mixture of a low-delta11B (~ +1?) 'composite' slab fluid (a mixture of metasediment- and metabasalt-derived fluids) with a metasomatized mantle wedge containing elevated B (~1-2 ppm) and heavy delta11B (~ +14?). The mantle wedge was likely metasomatized by 11B-rich fluids beneath the outer forearc, and subsequently down dragged to arc front depths by the descending slab. Pb-B isotope systematics indicate that, at arc front depths, ~ 53% of the B in the Izu VF is derived from the wedge. This implies that the heavy delta11B values of Izu VF rocks are largely a result of fluid fractionation, and do not reflect variations in slab source provenance (i.e. subducting sediment vs. basaltic crust). Since the B content of the peridotite at the outer forearc (7-58 ppm B, mean 24 +/- 16 ppm) is much higher than beneath the arc front (~1-2 ppm B), the hydrated mantle wedge must have released a B-rich fluid on its downward path. This 'wedge flux' can explain (1) the across-arc decrease in B and delta11B (e.g. Izu, Kuriles), without requiring a progressive decrease in fluid flux from the subducting slab, and (2) the thermal structure of volcanic arcs, as reflected in the B and delta11B variations of volcanic arc rocks.
Resumo:
Hydrothermal fluids expelled from the seafloor at high and low temperatures play pivotal roles in controlling seawater chemistry. However, the magnitude of the high temperature water flux of mid-ocean ridge axes remains widely disputed and the volume of low temperature vent fluids at ridge flanks is virtually unconstrained. Here, we determine both high and low temperature hydrothermal fluid fluxes using the chemical and isotopic mass balance of the element thallium (Tl) in the ocean crust. Thallium is a unique tracer of ocean floor hydrothermal exchange because of its contrasting behavior during seafloor alteration at low and high temperatures and the distinctive isotopic signatures of fresh and altered MORB and seawater. The calculated high temperature hydrothermal water flux is (0.17-2.93)*10**13 kg/yr with a best estimate of 0.72*10**13 kg/yr. This result suggests that only about 5 to 80% of the heat available at mid-ocean ridge axes from the crystallization and cooling of the freshly formed ocean crust, is released by high temperature black smoker fluids.The residual thermal energy ismost likely lost via conduction and/or through the circulation of intermediate temperature hydrothermal fluids that do not alter the chemical budgets of Tl in the ocean crust. The Tl-based calculations indicate that the low temperature hydrothermal water flux at ridge flanks is (0.2-5.4)*10**17 kg/yr. This implies that the fluids have an average temperature anomaly of only about 0.1 to 3.6 °C relative to ambient seawater. If these low temperatures are correct then both Sr and Mg are expected to be relatively unreactive in ridge-flank hydrothermal systems and this may explain why the extent of basalt alteration that is observed for altered ocean crust appears insufficient to balance the oceanic budgets of 87Sr/86Sr and Mg.
Resumo:
Two sealed borehole hydrologic observatories (CORKs) were installed in two active hydrogeochemical systems at the Costa Rica subduction zone to investigate the relationship between tectonics, fluid flow, and fluid composition. The observatories were deployed during Ocean Drilling Program (ODP) Leg 205 at Site 1253, ~ 0.2 km seaward of the trench, in the upper igneous basement, and at Site 1255, ~ 0.5 km landward of the trench, in the décollement. Downhole instrumentation was designed to monitor formation fluid flow rates, composition, pressure, and temperature. The two-year records collected by this interdisciplinary effort constitute the first co-registered hydrological, chemical, and physical dataset from a subduction zone, providing critical information on the average and transient state of the subduction thrust and upper igneous basement. The continuous records at ODP Site 1253 show that the uppermost igneous basement is highly permeable hosting an average fluid flow rate of 0.3 m/yr, and indicate that the fluid sampled in the basement is a mixture between seawater (~ 50%) and a subduction zone fluid originating within the forearc (~ 50%). These results suggest that the uppermost basement serves as an efficient pathway for fluid expelled from the forearc that should be considered in models of subduction zone hydrogeology and deformation. Three transients in fluid flow rates were observed along the décollement at ODP Site 1255, two of which coincided with stepwise increases in formation pressure. These two transients are the result of aseismic slip dislocations that propagated up-dip from the seismogenic zone over the course of ~ 2 weeks terminating before reaching ODP Site 1255 and the trench. The nature and temporal behavior of strain and the associated hydrological response during these slow slip events may be an analog for the response of the seaward part of the subduction prism during or soon after large subduction zone earthquakes.
Resumo:
This search, containing 128 references, was prepared to serve as a guide to the report literature on the fabrication and joining of beryllium. Studies on compacts and powder metallurgy are included. Articles selected from scientific journals and which appear in Nuclear Science Abstracts (NSA) are included. Reports are listed alpha-numerically under the issuing agency.