Rare earth and trace elements in igneous and metamorphic minerals of oceanic gabbros from the Mid-Atlantic Ridge


Autoria(s): Cortesogno, Luciano; Gaggero, Laura; Zanetti, Alberto
Cobertura

MEDIAN LATITUDE: 23.542300 * MEDIAN LONGITUDE: -45.026770 * SOUTH-BOUND LATITUDE: 23.540600 * WEST-BOUND LONGITUDE: -45.032100 * NORTH-BOUND LATITUDE: 23.552700 * EAST-BOUND LONGITUDE: -45.014400 * DATE/TIME START: 1993-12-20T00:00:00 * DATE/TIME END: 1994-12-29T00:00:00

Data(s)

26/10/2000

Resumo

SIMS analyses have been carried out on clinopyroxenes, plagioclases and amphiboles of six gabbroic samples from Holes 921-924 of the Ocean Drilling Program Leg 153 sited in the MARK area of the Mid-Atlantic Ridge at the ridge-transform intersection, to investigate the rare earth, trace and volatile element distribution in the lower ocean crust during igneous crystallization and higher grade metamorphic conditions. The metagabbros underwent granulite to subgreenschist facies conditions through three main tectono-metamorphic phases: (1) ductile regime (750 < T < 1000 °C and P = 0.3 GPa); (2) transitional regime (600 < T < 700 °C and P = 0.2 GPa); (3) brittle regime (350 < T < 600 °C and P < 0.2 GPa). Igneous clinopyroxenes show Cl-chondrite normalized patterns depleted in LREE, and nearly flat for HREE. The rare earth and trace element distributions in igneous clinopyroxenes and plagioclases indicate that these minerals act as REE reservoirs, and comprise the main contribution to the overall rock content. The abundances in igneous minerals reflect the degree of fractionation of the parent liquids. In metamorphic clinopyroxenes recrystallized in anhydrous assemblages, the REE and trace elements patterns mimic those of the primary ones. Conversely, clinopyroxerie re-equilibrated in amphibolebearing assemblages shows a significant increase in REE, Ti, Zr, Y and V, a negative Eu anomaly, and slight decreases in Sr and Ba. An overall increase of REE and some trace elements is evident in hydrous assemblages, with preferential partitioning in the amphibole. It shows high Ti (18196-22844 ppm), LREE depleted patterns and LaN/SmN = 0.10-0.33, LaN/YbN = 0.10-0.30. Amphiboles from granoblastic assemblages show homogeneous patterns with no or a positive anomaly for TiN and negative anomalies for SrN and ZrN. Volatiles in amphibole are low, with Cl/F < 1; H2O% is significantly lower than the stoichiometric ratio (1.33-1.53%). The composition of the clinopyroxene and amphibole recrystallized in low-strain domains records evidence of incomplete re-equilibration, and element diffusion and partitioning is in part controlled by the textural site. The possible origins of the fluids involved in the metamorphic recrystallization are discussed: (1) remobilization from igneous amphibole; (2) exsolution from evolved melts; (3) introduction of seawater-derived fluids modified in rock-dominated systems; (4) injection of highly evolved hydrous melts during the metamorphic process.

Formato

application/zip, 15 datasets

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.667112

doi:10.1594/PANGAEA.667112

Idioma(s)

en

Publicador

PANGAEA

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Cortesogno, Luciano; Gaggero, Laura; Zanetti, Alberto (2000): Rare earth and trace elements in igneous and high-temperature metamorphic minerals of oceanic gabbros (MARK area, Mid-Atlantic Ridge). Contributions to Mineralogy and Petrology, 139(4), 373-393, doi:10.1007/s004100000147

Palavras-Chave #153-921; 153-921B; 153-922A; 153-923A; 153-924B; a.p.f.u.; Al; Aluminium; Amp; Amphibole; analysed minerals, magmatite; analysed minerals, metamorphite; analysed minerals, Red Am; analysis no.; B; Ba; Barium; Be; Beryllium; BI87; Boron; Caesium; Ce; Cerium; Chloride; Chromium; Cl-; Clinopyroxene; COMPCORE; Composite Core; Cpx; Cr; Cs; Depth; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Depth bot; Depth top; DRILL; Drilling/drill rig; Dy; Dysprosium; Er; Erbium; Eu; Eu/Eu*; Europium; Europium anomaly; F; Fluorine; Gadolinium; Gd; H2O; Heavy rare-earth elements; HREE; ICP-MS, Inductively coupled plasma - mass spectrometry; Ion probe analysis; Isotope ratio mass spectrometry; Joides Resolution; K+; La; La/Sm; La/Yb; Label; Lanthanum; Lanthanum/Samarium ratio; Lanthanum/Ytterbium ratio; Leg153; Li; Light rare-earth elements; Lithium; Lithology; Lithology/composition/facies; LREE; Lu; Lutetium; Magnesium number; Mg/(Mg + Fe); Na; Nb; Nd; Neodymium; Niobium; No; North Atlantic Ocean; Number; Ocean Drilling Program; ODP; ODP sample designation; Pl; Plagioclase; Potassium; Rare-earth elements; Ratio of benthic to planktic foraminifer; Rb; REE; Rubidium; Samarium; Samarium/Ytterbium ratio; Sample code/label; Sc; Scandium; Sm; Sm/Yb; Sodium; Sr; Sr/Sr*; Strontium; Strontium anomaly; textural features; Texture; Ti; Ti/Ti*; Ti/Zr; Titanium; Titanium/Zirconium ratio; Titanium anomaly; V; Vanadium; Water in rock; Y; Yb; Ytterbium; Yttrium; Zirconium; Zirconium/Yttrium ratio; Zr; Zr/Y
Tipo

Dataset