Sedimentological, geochemical, micropaleontological and rock magnetic proxies of sediment core GeoB6211-2


Autoria(s): Razik, Sebastian; Chiessi, Cristiano Mazur; Romero, Oscar E; von Dobeneck, Tilo
Cobertura

LATITUDE: -32.505200 * LONGITUDE: -50.242700 * DATE/TIME START: 1999-12-12T17:21:00 * DATE/TIME END: 1999-12-12T17:21:00

Data(s)

12/04/2013

Resumo

Surface currents and sediment distribution of the SE South American upper continental margin are under influence of the South American Monsoon System (SAMS) and the Southern Westerly Wind Belt (SWWB). Both climatic systems determine the meridional position of the Subtropical Shelf Front (STSF) and probably also of the Brazil-Malvinas Confluence (BMC). We reconstruct the changing impact of the SAMS and the SWWB on sediment composition at the upper Rio Grande Cone off southern Brazil during the last 14 cal kyr combining sedimentological, geochemical, micropaleontological and rock magnetic proxies of marine sediment core GeoB 6211-2. Sharp reciprocal changes in ferri- and paramagnetic mineral content and prominent grain-size shifts give strong clues to systematic source changes and transport modes of these mostly terrigenous sediments. Our interpretations support the assumption that the SAMS over SE South America was weaker than today during most of the Late Glacial and entire Early Holocene, while the SWWB was contracted to more southern latitudes, resembling modern austral summer-like conditions. In consequence, the STSF and the BMC were driven to more southern positions than today's, favoring the deposition of Fe-rich but weakly magnetic La Plata River silts at the Rio Grande Cone. During the Mid Holocene, the northern boundary of the SWWB migrated northward, while the STSF reached its northernmost position of the last 14 cal kyr and the BMC most likely arrived at its modern position. This shift enabled the transport of Antarctic diatoms and more strongly magnetic Argentinean shelf sands to the Rio Grande Cone, while sediment contributions from the La Plata River became less important. During the Late Holocene, the modern El Niño Southern Oscillation set in and the SAMS and the austral tradewinds intensified, causing a southward shift of the STSF to its modern position. This reinforced a significant deposition of La Plata River silts at the Rio Grande Cone. These higher magnetic silts with intermediate Fe contents mirror the modern more humid terrestrial climatic conditions over SE South America.

Formato

application/zip, 12 datasets

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.805136

doi:10.1594/PANGAEA.805136

Idioma(s)

en

Publicador

PANGAEA

Relação

Müller, Peter J (2004): Carbon and nitrogen data of sediment core GeoB6211-2. Department of Geosciences, Bremen University, doi:10.1594/PANGAEA.137054

Müller, Peter J (2004): Density and water content of sediment core GeoB6211-2. Department of Geosciences, Bremen University, doi:10.1594/PANGAEA.137022

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Razik, Sebastian; Chiessi, Cristiano Mazur; Romero, Oscar E; von Dobeneck, Tilo (2013): Interaction of the South American Monsoon System and the Southern Westerly Wind Belt during the last 14 kyr. Palaeogeography, Palaeoclimatology, Palaeoecology, 374, 28-40, doi:10.1016/j.palaeo.2012.12.022

Palavras-Chave #[w/w]; [w/w], 5-point running average; 0.412-0.375 µm; 0.452-0.412 µm; 0.496-0.452 µm; 0.545-0.496 µm; 0.598-0.545 µm; 0.656-0.598 µm; 0.721-0.656 µm; 0.791-0.721 µm; 0.868-0.791 µm; 0.953-0.868 µm; 1.047-0.953 µm; 1.149-1.047 µm; 1.261-1.149 µm; 1.384 -1.261 µm; 1.520-1.384 µm; 1.668-1.520 µm; 1.832-1.668 µm; 10.78-9.818 µm; 101.1-92.09 µm; 11.83-10.78 µm; 111.0-101.1 µm; 12.99-11.83 µm; 121.8-111.0 µm; 133.7-121.8 µm; 14.26-12.99 µm; 146.8-133.7 µm; 15.65-14.26 µm; 161.2-146.8 µm; 17.18-15.65 µm; 176.9 -161.2 µm; 18.86-17.18 µm; 194.2 -176.9 µm; 1 Sigma calibrated age range; 1 Sigma error; 2.010-1.832 µm; 2.207-2.010 µm; 2.423-2.207 µm; 2.660-2.423 µm; 2.920-2.660 µm; 20.70-18.86 µm; 213.2-194.2 µm; 22.73-20.70 µm; 24.95-22.73 µm; 27.38-24.95 µm; 3.205-2.920 µm; 3.519-3.205 µm; 3.862-3.519 µm; 30.07-27.38 µm; 33.01-30.07 µm; 36.24-33.01 µm; 39.77-36.24 µm; 4.240-3.863 µm; 4.655-4.240 µm; 43.67-39.78 µm; 47.94-43.67 µm; 5.110-4.655 µm; 5.610-5.110 µm; 52.62-47.94 µm; 57.77-52.62 µm; 6.158-5.611 µm; 6.761-6.158 µm; 63.41-57.77 µm; 69.62-63.41 µm; 7.421-6.760 µm; 76.42-69.61 µm; 8.147-7.421 µm; 8.943-8.147 µm; 83.89-76.42 µm; 9.818-8.943 µm; 92.09-83.90 µm; Additional ages used in the age model; after Bleil and von Dobeneck (2003); after Schrader and Gersonde (1978); Age; AGE; Age, 14C AMS; Age, 14C calibrated, CALIB 6.0 (Reimer et al., 2009); Age, comment; Age, dated; Age, dated standard deviation; Age, maximum/old; Age, minimum/young; Age dated; Age max; Age min; Age std dev; Argentine Basin; Beckman Coulter Laser diffraction particle size analyzer LS 200; CaCO3; Calcium carbonate; Calculated; Calculated, CaCO3=(TC-TOC)*8.333; calibrated; carbonate-free; carbonate-free, 5-point running average; Center for Marine Environmental Sciences; chi_cfdm; Comm; D50; Depth; DEPTH, sediment/rock; Depth Comment; Diatom antarctic; Diatoms antarctic; Fe; GeoB; GeoB6211-2; Geosciences, University of Bremen; Gravity corer (Kiel type); Iron; Label; M46/2; Magnetometer, U-channel, Model 755R, 2G Enterprises; MARUM; Median, grain size; Meteor (1986); Normalized to peak values; NOSAMS: National Ocean Sciences Accelerator Mass Spectrometry Facility at Woods Hole (USA), KIA: Leibniz-Laboratory for Radiometric Dating and Stable Isotope Research at Kiel (Germany); Ratio; raw radiocarbon dates; Sample code/label; Saturation isothermal remanent magnetization; SIRM; SIRMcf 2.63T [mA m**2 kg**-1] / cal. Fecf [g kg**-1]; Size fraction 0.412-0.375 µm; Size fraction 0.452-0.412 µm; Size fraction 0.496-0.452 µm; Size fraction 0.545-0.496 µm; Size fraction 0.598-0.545 µm; Size fraction 0.656-0.598 µm; Size fraction 0.721-0.656 µm; Size fraction 0.791-0.721 µm; Size fraction 0.868-0.791 µm; Size fraction 0.953-0.868 µm; Size fraction 1.047-0.953 µm; Size fraction 1.149-1.047 µm; Size fraction 1.261-1.149 µm; Size fraction 1.384 -1.261 µm; Size fraction 1.520-1.384 µm; Size fraction 1.668-1.520 µm; Size fraction 1.832-1.668 µm; Size fraction 10.78-9.818 µm; Size fraction 101.1-92.09 µm; Size fraction 11.83-10.78 µm; Size fraction 111.0-101.1 µm; Size fraction 12.99-11.83 µm; Size fraction 121.8-111.0 µm; Size fraction 133.7-121.8 µm; Size fraction 14.26-12.99 µm; Size fraction 146.8-133.7 µm; Size fraction 15.65-14.26 µm; Size fraction 161.2-146.8 µm; Size fraction 17.18-15.65 µm; Size fraction 176.9 -161.2 µm; Size fraction 18.86-17.18 µm; Size fraction 194.2 -176.9 µm; Size fraction 2.010-1.832 µm; Size fraction 2.207-2.010 µm; Size fraction 2.423-2.207 µm; Size fraction 2.660-2.423 µm; Size fraction 2.920-2.660 µm; Size fraction 20.70-18.86 µm; Size fraction 213.2-194.2 µm; Size fraction 22.73-20.70 µm; Size fraction 24.95-22.73 µm; Size fraction 27.38-24.95 µm; Size fraction 3.205-2.920 µm; Size fraction 3.519-3.205 µm; Size fraction 3.862-3.519 µm; Size fraction 30.07-27.38 µm; Size fraction 33.01-30.07 µm; Size fraction 36.24-33.01 µm; Size fraction 39.77-36.24 µm; Size fraction 4.240-3.863 µm; Size fraction 4.655-4.240 µm; Size fraction 43.67-39.78 µm; Size fraction 47.94-43.67 µm; Size fraction 5.110-4.655 µm; Size fraction 5.610-5.110 µm; Size fraction 52.62-47.94 µm; Size fraction 57.77-52.62 µm; Size fraction 6.158-5.611 µm; Size fraction 6.761-6.158 µm; Size fraction 63.41-57.77 µm; Size fraction 69.62-63.41 µm; Size fraction 7.421-6.760 µm; Size fraction 76.42-69.61 µm; Size fraction 8.147-7.421 µm; Size fraction 8.943-8.147 µm; Size fraction 83.89-76.42 µm; Size fraction 9.818-8.943 µm; Size fraction 92.09-83.90 µm; SL; Susceptibility, specific, carbonate-free; Xcf [10**-8 m**3 kg**-1] / cal. Fecf [g kg**-1]
Tipo

Dataset