960 resultados para feed efficiency


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 1.55-mum laser diode integrated with a spot-size converter was fabricated in a single step epitaxial by using the conventional photolithography and chemical wet etching process. The device was constructed by a conventional ridge waveguide active layer and a larger passive ridge-waveguide layer. The threshold current was 40 mA together with high slope efficiency of 0.24 W/A. The beam divergence angles in the horizontal and vertical directions were as small as 12.0degrees x 15.0degrees, respectively, resulting in about 3.2-dB coupling losses with a cleaved optical fibre.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high-power continuous wave (cw) mode-locked Nd:YVO4 solid-state laser was demonstrated by use of a semiconductor absorber mirror (SAM). The maximum average output power was 8.1 W and the optic-to-optic conversion efficiency was about 41 %. At the maximum incident pump power, the pulse width was about 8.6 ps and the repetition rate was 130 MHz. Experimental results indicated that this absorber was suitable for high power mode-locked solid-state lasers. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unselective regrowth for fabricating 1.5-mu m InGaAsP multiple-quantum well (MQW) distributed-feedback (DFB) buried heterostructure (BH) lasers is developed. The experimental results exhibit superior characteristics, such as a low threshold of 8.5 mA, high slope efficiency of 0.55 mW/mA, circular-like far-field patterns, the narrow line-width of 2.5 MHz, etc. The high performance of the devices effectively proves the feasibility of the new method to fabricate buried heterostructure lasers. (c) 2006 Society of Photo-Optical Instrumentation Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wafers with normal light-emitting diode structure were grown by metal organic chemical vapor deposition system. The pressure and temperature were varied during growth of buffer layer in order to grow different types of epilayers. The cathodoluminescence results show that the interface distortion of quantum well plays an important role in radiant efficiency. The electroluminescence detections indicate that the dislocations also influence the external quantum efficiency by lowering the electron injection efficiency. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicon nanoparticles have been fabricated in both oxide and nitride matrices by using plasma-enhanced chemical vapour deposition, for which a low substrate temperature down to 50 degreesC turns out to be most favourable. High-rate deposition onto such a cold substrate results in the formation of nanoscaled silicon particles, which have revealed an amorphous nature under transmission electron microscope (TEM) examination. The particle size can be readily controlled below 3.0 nm, and the number density amounts to over 10(12) cm(-2), as calculated from the TEM micrographs. Strong photoluminescence in the whole visible light range has been observed in the as-deposited Si-in-SiOx and Si-in-SiNx thin films. Without altering the size or structure of the particles, a post-annealing at 300 degreesC for 2 min raised the photoluminescence efficiency to a level comparable to the achievements with nanocrystalline Si-in-SiO2 samples prepared at high temperature. This low-temperature procedure for fabricating light-emitting silicon structures opens up the possibility of manufacturing integrated silicon-based optoelectronics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicon nanocrystals in SiO2 matrix are fabricated by plasma enhanced chemical vapor deposition followed by thermal annealing. The structure and photoluminescence (PL) of the resulting films is investigated as a function of deposition temperature. Drastic improvement of PL efficiency up to 12% is achieved when the deposition temperature is reduced from 250 degreesC to room temperature. Low-temperature deposition is found to result in a high quality final structure of the films in which the silicon nanocrystals are nearly strain-free, and the Si/SiO2 interface sharp. The demonstration of the superior structural and optical properties of the films represents an important step towards the development of silicon-based light emitters. (C) 2002 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Absolute measurement of detector quantum efficiency using optical parametric down-conversion has been extensively studied for the case of a continuous wave pump. In this paper, we have used the temporally and spatially correlated properties of the down-converted photon pairs generated in a nonlinear crystal pumped by a femtosecond laser pulse to perform an absolute measurement of detector quantum efficiency. The measured detector quantum efficiency is in excellent agreement with the measured value in the conventional way. A lens with a long focal length was adopted for efficiently increasing the intensity of the down-conversion entangled photon source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tunnel-regenerated multiple-active-region (TRMAR) light-emitting diodes (LEDs) with high quantum efficiency and high brightness have been proposed and fabricated. We have proved experimentally that the efficiency of the electrical luminescence and the on-axis luminous intensity of such TRMAR LEDs scaled linearly approximately with the number of the active regions. The on-axis luminous intensity of such TRMAR LEDs with only 3 mum GaP current spreading layer have exceeded 5 cd at 20 mA dc operation under 15 degrees package. The high-quantum-efficiency and high-brightness LEDs under the low injection level were realized. (C) 2001 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have made a normal incidence high infrared absorption efficiency AlAs/Al0.55Ga0.45As multiple-quantum-well structure grown on (211) GaAs substrates by molecular beam epitaxy (MBE). A strong infrared absorption signal at 11.6 mu m due to the transition of the ground state to the first excited state, and a small signal at 6.8 mu m due to the transition from the ground state to continuum. were observed. A 45 degrees tilted incidence measurement was also performed on the same sample for the comparison with a normal incidence measurement. Both measurements provide important information about the quantum well absorption efficiency. Efficiencies which evaluate the absorption of electric components perpendicular and parallel to the well plane are eta(perpendicular to) = 25% and eta(parallel to) = 88%, respectively. The total efficiency is then deduced to be eta = 91%. It is apparent that the efficiency eta(parallel to) dominates the total quantum efficiency eta Because an electron in the (211) AlAs well has a small effective mass (m(zx)* or m(zy)*), the normal incidence absorption coefficient is expected to be higher:than that grown on (511) and (311) substrates. Thus, in the present study, we use the (211) substrate to fabricate QWIP. The experimental results indicate the potential of these novel structures for use as normal incidence infrared photodetectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a novel optical fiber-to-waveguide coupler for integrated optical circuits. The proper materials and structural parameters of the coupler, which is based on a slot waveguide, are carefully analyzed using a full-vectorial three dimensional mode solver. Because the effective refractive index of the mode in a silicon-on-insulator-based slot waveguide can be extremely close to that of the fiber, a highly efficient fiber-to-waveguide coupling application can be realized. For a TE-like mode, the calculated minimum mismatch loss is about 1.8dB at 1550nm, and the mode conversion loss can be less than 0.5dB. The discussion of the present state-of-the-art is also involved. The proposed coupler can be used in chip-to-chip communication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nano-patterning sapphire substrates technique has been developed for nitrides light-emitting diodes (LEDs) growths. It is expected that the strain induced by the lattice misfits between the GaN epilayers and the sapphire substrates can be effectively accommodated via the nano-trenches. The GaN epilayers grown on the nano-patterned sapphire substrates by a low-pressure metal organic chemical vapor deposition (MOCVD) are characterized by means of scanning electron microscopy (SEM), high-resolution x-ray diffraction (HRXRD) and photoluminescence (PL) techniques. In comparison with the planar sapphire substrate, about 46% increment in device performance is measured for the InGaN/GaN blue LEDs grown on the nano-patterned sapphire substrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the relation between the thickness of sapphire substrates and the extraction efficiency of LED. The increasing about 5% was observed in the simulations and experiments when the sapphire thickness changed from 100um to 200um. But the output power increasing is inconspicuous when the thickness is more than 200um. The structure on bottom face of sapphire substrates can enhance the extraction efficiency of GaN-based LED, too. The difference of output power between the flip-chip LED with smooth bottom surface and the LED with roughness bottom surface is about 50%, where only a common sapphire grinding process is used. But for those LEDs grown on patterned sapphire substrate the difference is only about 10%. Another kind of periodic pattern on the bottom of sapphire is fabricated by the dry etch method, and the output of the back-etched LEDs is improved about 50% than a common. case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, an evanescently coupled uni-traveling carrier photodiodes (EC-UTC-PDs) have been fabricated and investigated, which can benefit from the incorporation of a multimode diluted waveguide of appropriate length with experiment-simulation comparison. A high responsibvity of 0.68 A/W at 1.55-mu m without an anti-reflection coating, -1 dB compression current of more than 19 mA, and a large -1 dB vertical alignment tolerance of 2.2 mu m were achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper proposes a high efficiency RFID UHF power converter unit to overcome the low efficiency problem. This power converter is mainly composed of an RF-DC converter and a DC-DC converter. In order to overcome the low efficiency problem in low current consuming condition, a DC-DC converter is added to conventional single RF-DC converter rectifier to increase the rectifying efficiency of the RFDC rectifier. The power converter is implemented in a 0.18 um mixed signal, 1p6m CMOS technology. Simulation shows the power converter has an average improvement of 5% and can achieve efficiency as high as 30% with 900MHz, 16uW RF input power and 1.3 V 3.6uA DC output.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An AlGaN/GaN HBT structure was grown by low-pressure metalorganic chemical vapor deposition (MOCVD) on sapphire substrate. From the high-resolution x-ray diffraction and transmission electron microscopy (TEM) measurements, it was indicated that the structure is of good quality and the AlGaN/GaN interfaces are abrupt and smooth. In order to obtain the values of Si doping and electronic concentrations in the AlGaN emitter and GaN emitter cap layers, Secondary Ion Mass Spectroscopy (SIMS) and electrochemical CV measurements were carried out. The results showed that though the flow rate of silane (SiH4) in growing the AlGaN emitter was about a quarter of that in growing GaN emitter cap and subcollector layer, the Si sputtering yield in GaN cap layer was much smaller than that in the AlGaN emitter layer. The electronic concentration in GaN was about half of that in the AlGaN emitter layer. It is proposed that the Si, Al co-doping in growing the AlGaN emitter layer greatly enhances the Si dopant efficiency in the AlGaN alloy. (c) 2006 WILEY-VCH Verlag GmbH & Co KGaA, Weinheim.