997 resultados para Quantum correlations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

AlGaInP/GaInP quantum well intermixing phenomena induced by Zn impurity diffusion at 540 degrees C were studied using room-temperature photo luminescence (PL) spectroscopy. As the diffusion time increased from 40 to 120 min, PL blue shift taken on the AlGaInP/GaInP quantum well regions increased from 36.3 to 171.6 meV. Moreover, when the diffusion time was equal to or above 60 min, it was observed firstly that a PL red shift occurred with a PL blue shift on the samples. After detailed analysis, it was found that the red-shift PL spectra were measured on the Ga0.51In0.49P buffer layer of the samples, and the mechanism of the PL red shift and the PL blue shift were studied qualitatively. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-power operation of uncoated 22-mu m-wide quantum cascade lasers (QCLs) emitting at lambda approximate to 4.8 mu m is reported. The emitting region of the QCL structure consists of a 30-period strain-compensated In0.68Ga0.32As/In0.37Al0.63As superlattice. For a 4-mm-long laser in pulsed mode, a peak output power is achieved in excess of 2240mW per facet at 81K with a threshold current density of 0.64kA/cm(2). The effects of varying the cavity lengths from 1 to 4mm on the performances of the QCLs are analysed in detail and the low waveguide loss of only about 1.4 cm(-1) is extracted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the molecular beam epitaxy growth of metamorphic InxGa(1-x)As materials (x up to 0.5) on GaAs substrates systematically. Optimization of structure design and growth parameters is aimed at obtaining smooth surface and high optical quality. The optimized structures have an average surface roughness of 0.9-1.8 nm. It is also proven by PL measurements that the optical properties of high indium content (55%) InGaAs quantum wells are improved apparently by defect reduction technique and by introducing Sb as a surfactant. These provide us new ways for growing device quality metamorphic structures on GaAs substrates with long-wavelength emissions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-assembled InAs quantum dots were prepared on GaAS(100)) substrate in a solid source molecular beam epitaxy system The distribution and topographic images of uncapped dots were studied by atomic force microscope. The statistical result shows that the quantum dots are bimodal distribution. The photoluminescence spectrum results shows that the intensity of small size quantum dots dominated, which may be due to: (1) the state density of large quantum dots lower than that of small quantum dots; (2) the carriers capture rate of large size quantum dots is small relative to that of small ones; (3) there is a large strain barrier between large quantum dots and capping layer, and the large strain is likely to produce the defect and dislocation, resulting in a probability carriers transferring from large quantum dots to small dots that is very small with temperature increasing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the disentanglement evolution of two spin qubits which interact with a general XY spin-chain environment. The dynamical process of the disentanglement is numerically and analytically investigated in the vicinity of a quantum phase transition (QPT) of the spin chain in both weak and strong coupling cases. We find that the disentanglement of the two spin qubits may be greatly enhanced by the quantum critical behavior of the environmental spin chain. We give a detailed analysis to facilitate the understanding of the QPT-enhanced decaying behavior of the coherence factor. Furthermore, the scaling behavior in the disentanglement dynamics is also revealed and analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the 1.58 mu m emission at room temperature from a metamorphic In0.6Ga0.4As quantum well laser grown on GaAs by molecular beam epitaxy. The large lattice mismatch was accommodated through growth of a linearly graded buffer layer to create a high quality virtual In0.32Ga0.68As substrate. Careful growth optimization ensured good optical and structural qualities. For a 1250x50 mu m(2) broad area laser, a minimum threshold current density of 490 A/cm(2) was achieved under pulsed operation. This result indicates that metamorphic InGaAs quantum wells can be an alternative approach for 1.55 mu m GaAs-based lasers. (C) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The shape of truncated square-based pyramid quantum dots (QDs) is similar to that of real QDs in experiments. The electronic band structures and optical gain of InAs1-xNx/GaAs QDs are calculated by using the 10-band k.p model, and the strain is calculated by the valence force field (VFF) method. When the top part of the QD is truncated, greater truncation corresponds to a flatter shape of the QD. The truncation changes the strain distribution and the confinement in the z direction. A flatter QD has a greater C1-HH1 transition energy, greater transition matrix element, less detrimental effect of higher excited transition, and higher saturation gain and differential gain. The trade-off between these properties must be considered. From our results, a truncated QD with half of its top part removed has better overall performance. This can provide guidance to growing QDs in experiments in which the proper growing conditions can be controlled to achieve required properties. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this letter, we have demonstrated continuous-wave single-mode operation of 1.3-mu m InAs-GaAs quantum-dot (QD) vertical-cavity surface-emitting lasers (VCSELs) with p-type modulation-doped QD active region from 20 degrees C to 60 degrees C. The highest output power of 0.435mW and lowest threshold current of 1.2 mA under single-mode operation are achieved. The temperature-dependent output characteristics of QD-VCSELs are investigated. Single-mode operation with a sidemode suppression ratio of 34 dB is observed at room temperature. The critical size of oxide aperture for single-mode operation is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We theoretically study the spatial behaviors of spin precessions modulated by an effective magnetic field in a two-dimensional electron system with spin-orbit interaction. Through analysis of interaction between the spin and the effective magnetic field, we find some laws of spin precession in the system, by which we explain some previous phenomena of spin precession, and predict a controllable electron spin polarization wave in [001]-grown quantum wells. The shape of the wave, like water wave, mostly are ellipse-like or circle-like, and the wavelength is anisotropic in the quantum wells with two unequal coupling strengths of the Rashba and Dresselhaus interactions, and is isotropic in the quantum wells with only one spin orbit interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The choice of the etching depth for semiconductor microcavities is a compromise between a high Q factor and a difficult technique in a practical fabricating process. In this paper, the influences of the etching depth on mode Q factors for mid-infrared quantum cascade microcylinder and microsquare lasers around 4.8 and 7.8 mu m are simulated by three-dimensional (3D) finite-difference time-domain (FDTD) techniques. For the microcylinder and the microsquare resonators, the mode Q factors of the whispering-gallery modes (WGMs) increase exponentially and linearly with the increase in the etching depth, respectively Furthermore, the mode Q factors of some higher order transverse WGMs may be larger than that of the fundamental transverse WGM in 3D microsquares. Based on the field distribution of the vertical multilayer slab waveguide and the mode Q factors versus the etching depth, the necessary etching depth is chosen at the position where the field amplitude is 1% of the peak value of the slab waveguide. In addition, the influences of sidewall roughness on the mode Q factors are simulated for microsquare resonators by 2D FDTD simulation. (C) 2009 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate theoretically the charge and spin transport in quantum wires grown along different crystallographic planes in the presence of the Rashba spin-orbit interaction (RSOI) and the Dresselhaus spin-orbit interaction (DSOI). We find that changing the crystallographic planes leads to a variation of the anisotropy of the conductance due to a different interplay between the RSOI and DSOI, since the DSOI is induced by bulk inversion asymmetry, which is determined by crystallographic plane. This interplay depends sensitively on the crystallographic planes, and consequently leads to the anisotropic charge and spin transport in quantum wires embedded in different crystallographic planes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two dimensional silicon-on-insulator based photonic crystal structure is used to enhance the emission from colloidal HgTe nanocrystal quantum dots embedded in a thin polymer film. The enhancement is resonant to the leaky eigenmodes of the photonic crystals due to coherent scattering effects. Transmittance and photoluminescence experiments are presented to map the leaky mode dispersion and the angle dependence of the emission enhancement factor, which reaches values up to 80 (650) for vertical (oblique) emission in the telecommunication wavelength range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate theoretically the spin states in InAs/AlSb/GaSb broken-gap quantum wells by solving the Kane model and the Poisson equation self-consistently. The spin states in InAs/AlSb/GaSb quantum wells are quite different from those obtained by the single-band Rashba model due to the electron-hole hybridization. The Rashba spin splitting of the lowest conduction subband shows an oscillating behavior. The D'yakonov-Perel' spin-relaxation time shows several peaks with increasing the Fermi wave vector. By inserting an AlSb barrier between the InAs and GaSb layers, the hybridization can be greatly reduced. Consequently, the spin orientation, the spin splitting, and the D'yakonov-Perel' spin-relaxation time can be tuned significantly by changing the thickness of the AlSb barrier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the investigation of electron spin quantum beats at room temperature in GaAsN thin films by time-resolved Kerr rotation technique. The measurement of the quantum beats, which originate from the Larmor precession of electron spins in external transverse magnetic field, yields an accurate determination of the conduction electron g factor. We show that the g factor of GaAs1-xNx thin films is significantly changed by the introduction of a small nitrogen fraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spin splitting of the AlyGa1-yAs/GaAs/AlxGa1-xAs/AlyGa1-yAs (x not equal y) step quantum wells (QWs) has been theoretically investigated with a model that includes both the interface and the external electric field contribution. The overall spin splitting is mainly determined by the interface contribution, which can be well manipulated by the external electric field. In the absence of the electric field, the Rashba effect exists due to the internal structure inversion asymmetry (SIA). The electric field can strengthen or suppress the internal SIA, resulting in an increase or decrease of the spin splitting. The step QW, which results in large spin splitting, has advantages in applications to spintronic devices compared with symmetrical and asymmetrical QWs. Due to the special structure design, the spin splitting does not change with the external electric field.