999 resultados para Processamento de catálogos de estrelas


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do Grau de Mestre em Engenharia Informática

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relatório de Estágio Pedagógico apresentado, na Faculdade de Ciências e Tecnologia, da Universidade Nova de Lisboa, para obtenção do grau de Mestre em Ensino de Biologia e de Geologia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia do Ambiente, Perfil Engenharia Sanitária

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Sanitária

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do Grau de Mestre em Tecnologia e Segurança Alimentar

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mestrado Integrado em Engenharia e Gestão Industrial

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de redes de Comunicação e Multimédia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Vias de Comunicação e Transportes

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Os sensores hiperespectrais que estão a ser desenvolvidos para aplicações em detecção remota, produzem uma elevada quantidade de dados. Tal quantidade de dados obriga a que as ferramentas de análise e processamento sejam eficientes e tenham baixa complexidade computacional. Uma tarefa importante na detecção remota é a determinação das substâncias presentes numa imagem hiperespectral e quais as suas concentrações. Neste contexto, Vertex component analysis (VCA), é um método não-supervisionado recentemente proposto que é eficiente e tem a complexidade computacional mais baixa de todos os métodos conhecidos. Este método baseia-se no facto de os vértices do simplex corresponderem às assinaturas dos elementos presentes nos dados. O VCA projecta os dados em direcções ortogonais ao subespaço gerado pelas assinaturas das substâncias já encontradas, correspondendo o extremo desta projecção à assinatura da nova substância encontrada. Nesta comunicação apresentam-se várias optimizações ao VCA nomeadamente: 1) a introdução de um método de inferência do sub-espaço de sinal que permite para além de reduzir a dimensionalidade dos dados, também permite estimar o número de substâncias presentes. 2) projeção dos dados é executada em várias direcções para garantir maior robustez em situações de baixa relação sinal-ruído. As potencialidades desta técnica são ilustradas num conjunto de experiências com dados simulados e reais, estes últimos adquiridos pela plataforma AVIRIS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mestrado em Engenharia Mecânica – Especialização Gestão Industrial

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mestrado em Engenharia Electrotécnica e de Computadores - Ramo de Sistemas Autónomos

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mestrado em Engenharia Informática, Área de Especialização em Tecnologias do Conhecimento e da Decisão

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado apresentada ao Instituto de Contabilidade e Administração do Porto para a obtenção do grau de Mestre em Marketing Digital, sob orientação de Doutor José Freitas Santos

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Na atualidade, existe uma quantidade de dados criados diariamente que ultrapassam em muito as mais otimistas espectativas estabelecidas na década anterior. Estes dados têm origens bastante diversas e apresentam-se sobre várias formas. Este novo conceito que dá pelo nome de Big Data está a colocar novos e rebuscados desafios ao seu armazenamento, tratamento e manipulação. Os tradicionais sistemas de armazenamento não se apresentam como a solução indicada para este problema. Estes desafios são alguns dos mais analisados e dissertados temas informáticos do momento. Várias tecnologias têm emergido com esta nova era, das quais se salienta um novo paradigma de armazenamento, o movimento NoSQL. Esta nova filosofia de armazenamento visa responder às necessidades de armazenamento e processamento destes volumosos e heterogéneos dados. Os armazéns de dados são um dos componentes mais importantes do âmbito Business Intelligence e são, maioritariamente, utilizados como uma ferramenta de apoio aos processos de tomada decisão, levados a cabo no dia-a-dia de uma organização. A sua componente histórica implica que grandes volumes de dados sejam armazenados, tratados e analisados tendo por base os seus repositórios. Algumas organizações começam a ter problemas para gerir e armazenar estes grandes volumes de informação. Esse facto deve-se, em grande parte, à estrutura de armazenamento que lhes serve de base. Os sistemas de gestão de bases de dados relacionais são, há algumas décadas, considerados como o método primordial de armazenamento de informação num armazém de dados. De facto, estes sistemas começam a não se mostrar capazes de armazenar e gerir os dados operacionais das organizações, sendo consequentemente cada vez menos recomendada a sua utilização em armazéns de dados. É intrinsecamente interessante o pensamento de que as bases de dados relacionais começam a perder a luta contra o volume de dados, numa altura em que um novo paradigma de armazenamento surge, exatamente com o intuito de dominar o grande volume inerente aos dados Big Data. Ainda é mais interessante o pensamento de que, possivelmente, estes novos sistemas NoSQL podem trazer vantagens para o mundo dos armazéns de dados. Assim, neste trabalho de mestrado, irá ser estudada a viabilidade e as implicações da adoção de bases de dados NoSQL, no contexto de armazéns de dados, em comparação com a abordagem tradicional, implementada sobre sistemas relacionais. Para alcançar esta tarefa, vários estudos foram operados tendo por base o sistema relacional SQL Server 2014 e os sistemas NoSQL, MongoDB e Cassandra. Várias etapas do processo de desenho e implementação de um armazém de dados foram comparadas entre os três sistemas, sendo que três armazéns de dados distintos foram criados tendo por base cada um dos sistemas. Toda a investigação realizada neste trabalho culmina no confronto da performance de consultas, realizadas nos três sistemas.