963 resultados para 2-MAGNON BOUND-STATES
Resumo:
Nanocrystalline Ge embedded in amorphous silicon dioxide matrix was fabricated by oxidizing hydrogenated amorphous Si/hydrogenated amorphous Ge (a-Si:H/a-Ge:H) multilayers. The structures before and after oxidation were systematically investigated. The orange-green light emission was observed at room temperature and the luminescence peak was located at 2.2 eV. The size dependence in the photoluminescence peak energy was not observed and the luminescence intensity was increased gradually with oxidation time. The origin for this visible light emission is discussed. In contrast to the simple quantum effect model, the surface defect states of nanocrystalline Ge are believed to play an important role in radiative recombination process. (C) 1999 American Institute of Physics. [S0003-6951(99)02425-0].
Resumo:
We use a polarizer to investigate quantum-well infrared absorption, and report experimental results as follows. The intrasubband transition was observed in GaAs/AlxGa1-xAs multiple quantum wells (MQWs) when the incident infrared radiation (IR) is polarized parallel to the MQW plane. According to the selection rule, an intrasubband transition is forbidden. Up to now, most studies have only observed the intersubband transition between two states with opposite parity. However, our experiment shows not only the intersubband transitions, but also the intrasubband transitions. In our study, we also found that for light doping in the well (4x10(18) cm(-3)), the intrasubband transition occurs only in the lowest subband, while for the heavy doping (8x10(18) cm(-3)), such a transition occurs not only in the lowest subband, but also in the first excited one, because of the electron subband filling. Further experimental results show a linear dependence of the intrasubband transition frequency on the root of the well doping density. These data are in good agreement with our numerical results. Thus we strongly suggest that such a transition can be attributed to plasma oscillation. Conversely, when the incident IR is polarized perpendicular to the MQW plane, intersubband-transition-induced signals appear, while the intrasubband-transition-induced spectra disappear for both light and heavy well dopings. A depolarization blueshift was also taken into account to evaluate the intersubband transition spectra at different well dopings. Furthermore, we performed a deep-level transient spectroscopy (DLTS) measurement to determine the subband energies at different well dopings. A good agreement between DLTS, infrared absorption, and numerical calculation was obtained. In our experiment, two important phenomena are noteworthy: (1) The polarized absorbance is one order of magnitude higher than the unpolarized spectra. This puzzling result is well explained in detail. (2) When the IR, polarized perpendicular to the well plane, normally irradiates the 45 degrees-beveled edge of the samples, we only observed intersubband transition spectra. However, the intrasubband transition signals caused by the in-plane electric-field component are significantly absent. The reason is that such in-plane electric-field components can cancel each other out everywhere during the light propagating in the samples. The spectral widths of bound-to-bound and bound-to-continuum transitions were also discussed, and quantitatively compared to the relaxation time tau, which is deduced from the electron mobility. The relaxation times deduced from spectral widths of bound-to-bound and bound-to-continuum transitions are also discussed, and quantitatively compared to the relaxation time deduced from electron mobility. [S0163-1829(98)01912-2].
Resumo:
The high-resolution spectral measurements for new local vibrational modes near 714 cm-1 due to the oxygen defect in semi-insulating GaAs are analyzed on the basis of a model calculation by self-consistent bond orbital approach. Two charge states of oxygen atom with 1 and 2 extra electrons are assigned to be responsible for these local modes. The observed frequencies are explained by the properties of Ga-O-1 and Ga-O-2 bonds and the calculated cohesive energy indicates that the O-2 state is stable. The results are in good agreement with the kinetic analysis.
Resumo:
Far infrared magnetophotoconductivity performed on high purity GaAs reveals the existence of fine structures in the resonant magnetopolaron regions. The fine structures are attributed to the presence of bound phonons due to multiphonon processes. We demonstrate that the magnetopolaron energy spectrum consists of bound phonon branches and magnetopolaron branches. Our results also indicate that different phonons are bound to a single impurity, and that the bound phonon in Si-doped GaAs is a quasilocalized mode.
Resumo:
Recognizing the computational difficulty due to the exponential behavior of the evanescent states in the calculations of the electron transmission in waveguide structures, the authors propose two transfer matrix methods and apply them to investigate the influence of the evanescent states on the electron wave propagation. The study shows that the effect of the evanescent states on the electron transport is obvious when the electron energy is close to the subband minima. The results show that the calculated transmissions are much enhanced if the evanescent states are omitted in the calculations. For the multiple-stub structures, it is found that the connecting channel length has a critical effect on the electron transmission depending on it larger or smaller than the attenuation lengths of evanescent states. Based on the study of the evanescent states, a new kind of waveguide structures which exhibit quantum modulated transistor action is proposed. (C) 1997 American Institute of Physics.
Resumo:
With contributions from both three-dimensional (3D) electrons in heavily doped contacts and 2D electrons in the accumulation layer, a self-consistent calculation based on effective mass theory is presented for studying the anomalous behaviour of the quasi-bound levels in the accumulation layer and that in the central well of an asymmetric double barrier structure (DBS). By choosing the thickness of the incident barrier properly, it is revealed that these two quasi-bound levels may merge into a unique bound level in the off-resonance regime which shows a very good 2D nature in contrast to the conventional picture for level crossing. An evident intrinsic I-V bistability is also shown. It is noticeable that the effect of charge build-up in the central well is so strong that the electric field in the incident barrier even decreases when the applied bias increases within the resonant region.
Resumo:
By photoluminescence measurements we find that at low temperature the linewidth of the excitonic luminescence broadens with increasing electron density in the wider well from a photoexcited type-I-type-II mixed GaAs/AlAs asymmetric double quantum well structure, which even makes the excitonic linewidth at 77 K larger than at 300 K above a certain excitation intensity. We verify that the broadening is due to the scattering of two-dimensional carriers to excitonic states. Based on the theory of the scattering of carriers to excitonic states, we calculate the broadening of the excitonic linewidth. Our experimental results are convincing for verifying the theoretical prediction. (C) 1995 American Institute of Physics.
Resumo:
An LCAO scheme (linear combination of atomic orbitals) taking into account ten atomic orbitals (s-, p-, and d-type) is used to calculate the electronic structure of a vacancy present in the core of the reconstructed 90 degrees partial dislocation in silicon. The levels in the band gap are extracted using Lanczos' algorithm and a continued fraction representation of the local density of states. The three-fold degenerate stale of the ideal vacancy is split into three levels with energies 0.26, 1.1, and 1.9 eV measured from the valence band edge.
Resumo:
Deep level transient spectroscopy (DLTS) technique was used to investigate deep electron states in n-type Al-doped ZnS1-xTex epilayers grown by molecular fiction epitaxy (MBE), Deep level transient Fourier spectroscopy (DLTFS) spectra of the Al-doped ZnS1-xTex (x = 0. 0.017, 0.04 and 0.046. respectively) epilayers reveal that At doping leads to the formation of two electron traps at 0.21 and 0.39 eV below the conduction hand. 1)DLTFS results suggest that in addition to the rules of Te as a component of [lie alloy as well as isoelectronic centers, Te is also involved in the formation of all electron trip, whose energy level relative to the conduction hand decreases a, Te composition increases.
Resumo:
The development of quantum cascade laser at 2.94 THz is reported. The laser structure is based on a bound-to-continuum active region and a semi-insulating surface-plasmon waveguide. Lasing is observed up to a heat-sink temperature of 70 K in pulsed mode with light power of 4.75 mW at 10 K and 1 mW at 70 K. A threshold current density of 296.5 A/cm(2) and an internal quantum efficiency of 1.57 x 10(-2) per cascade period are also observed at 10 K. The characteristic temperature of this laser is extracted to be T-0 = 57.5 K.
Resumo:
189W activities were produced via the 192Os(n, α) reaction using irradiation of isotopically enriched 192Os metallic powder of ~100 mg/cm2 with 14 MeV neutrons. The X-γ and γ-γ coincidence measurements were made so as to obtain γ rays from 189W decay and its coincidence relations. A new simple decay scheme of 189W including three γ rays of 210.2, 229.6 and 260.2 keV is proposed. Two new levels of 189Re at 470.4 and 489.8 keV are assigned.
Resumo:
A new measurement of proton resonance scattering on Be-7 was performed tip to the center-of-mass energy of 6.7 MeV using the low-energy RI beam facility CRIB (CNS Radioactive Ion Beam separator) at the Center for Nuclear Study of the University of Tokyo. The excitation function of Be-7 + p elastic scattering above 3.5 MeV was measured Successfully for the first time, providing important information about the resonance structure of the B-8 nucleus. The resonances are related to the reaction rate of Be-7(p.gamma)B-8. which is the key reaction in solar B-8 neutrino production. Evidence for the presence of two negative parity states is presented. One of them is a 2(-) state observed as a broad s-wave resonance, the existence of which had been questionable. Its possible effects on the determination of the astrophysical S-factor of Be-7(p.gamma)B-8 at solar energy are discussed. The other state had not been observed in previous measurements, and its spin and parity were determined as 1(-). (C) 2009 Elsevier B.V. All rights reserved.