999 resultados para substrate physics
Resumo:
Time-resolved light-current curves, spectra, and far-field distributions of ridge structure InGaN multiple quantum well laser diodes grown on sapphire substrate are measured with a temporal resolution of 0.1 ns under a pulsed current condition. Results show that the thermal lensing effect clearly improves the confinement of the higher order modes. The thermal lens leads to a lower threshold current for the higher order modes, a higher slope efficiency, and a change in the lasing mode of the device. The threshold current for the higher modes decreases by about 5 mA in every 10 ns in a pulse, and the slope efficiency increases by 7.5 times on the average when higher modes lase. (c) 2006 American Institute of Physics.
Resumo:
Arrays of vertically well-aligned ZnO nanorod-nanowall junctions have been synthesized on an undoped ZnO-coated silicon substrate by a carbothermal reduction and vapour phase transport method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) show that the nanostructures are well-oriented with the c-axis perpendicular to the substrate. The room temperature photoluminescence (PL) spectrum of the as-prepared ZnO nanostructure reveals a dominant near-band-edge (NBE) emission peak and a weak deep level (DL) emission, which demonstrates its good optical properties. Temperature-dependent PL spectra show that both the intensity of NBE and DL emissions increased with decreasing temperature. The NBE emission at 3.27 eV is identified to originate from the radiative free exciton recombination. The possible growth mechanism of ZnO nanorod-nanowall junctions is also proposed.
Resumo:
Single-crystalline alpha-Si3N4 nanowires are controlled to grow perpendicular to the wet-etched trenches in the SiO0.94 film on the plane of the Si substrate without metal catalysis. A detailed characterization is carried out by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The photoluminescence at 600 nm from alpha-Si3N4 nanowires is attributed to the recombination at the defect state formed by the Si dangling bond N3 equivalent to Si-center dot. The growth mechanism is considered to be related to the catalysis and nitridation of SiO nanoclusters preferably re-deposited around the inner corner of the trenches, as well as faster Si diffusion along the slanting side walls of the trenches. This simple direction-controlled growth method is compatible with the CMOS process, and could facilitate the fabrication of alpha-Si3N4 nanoelectronic or nanophotonic devices on the Si platform.
Resumo:
Hexangular indium nitride nanoflower pattern is observed from scanning electron microscopy and atomic force microscopy. The sample is grown on c-plane (0001) sapphire by metal organic chemical vapor deposition with intentional introduction of hydrogen gas. With the aid of hydrogen, a stable existence of metallic indium is achieved. This will induce the growth of InN nanoflowers via self-catalysis vapor-liquid-solid (VLS) process. It is found that the VLS process is modulated by the interface kinetics and thermodynamics among the sapphire substrate, indium, and InN, which leads to the special morphology of the authors' InN nanoflower pattern. (c) 2006 American Institute of Physics.
Resumo:
A self-assembled quantum-wire laser structure was grown by solid-source molecular beam epitaxy in an InAlGaAs-InAlAs matrix oil InP(001) substrate. Ridge-waveguide lasers were fabricated and demonstrated to operate at a heatsink temperature tip to 330 K in continuous-wave (CW) mode. The emission wavelength of the lasers with 5 mm-long cavity was 1.713 mu m at room temperature in CW mode. The temperature stability of the devices was analysed and the characteristic temperature was found to be 47 K in the mnge of 220-320 K.
Resumo:
We report a resonant tunneling diode (RTD) small signal equivalent circuit model consisting of quantum capacitance and quantum inductance. The model is verified through the actual InAs/In0.53Ga0.47As/AlAs RTD fabricated on an InP substrate. Model parameters are extracted by fitting the equivalent circuit model with ac measurement data in three different regions of RTD current-voltage (I-V) characteristics. The electron lifetime, representing the average time that the carriers remain in the quasibound states during the tunneling process, is also calculated to be 2.09 ps.
Resumo:
Vertically well-aligned ZnO nanoridge, nanorod, nanorod-nanowall junction, and nanotip arrays have been successfully synthesized on Si (100) substrates using a pulsed laser deposition prepared ZnO film as seed layer by thermal evaporation method. Experimental results illustrated that the growth of different morphologies of ZnO nanostructures was strongly dependent upon substrate temperature. X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies showed that the ZnO nanostructures were single crystals with a wurtzite structure. Compared with those of the other nanostructures, the photoluminescence (PL) spectrum of nanorod-nanowall junctions showed the largest intensity ratio of ultraviolet (UV) to yellow-green emission and the smallest full-width at half-maximum (FWHM) of the UV peak, reflecting the high optical quality and nearly defect free of crystal structure. The vertical alignment of the nanowire array on the substrate is attributed to the epitaxial growth of the nanostructures from the ZnO buffer layer. The growth mechanism was also discussed in detail. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Mode characteristics of a strongly confined square cavity suspended in air via a pedestal on the substrate are investigated by a three-dimensional finite-difference time-domain technique. The mode wavelengths and mode quality factors (Q factors) are calculated as the functions of the size of the pedestal and the slope angle 0 of the sidewalls of the square slab, respectively For the square slab with side length of 2 mu m, thickness of 0.2 mu m, and refractive index of 3.4, on a square pedestal with refractive index of 3.17, the Q factor of the whispering-gallery (WG)-like mode transverse-electric TE(3.5)o first increases with the side length b of the square pedestal and then quickly decreases as b > 0.4 mu m, but the Q factor of the WG-like mode TE(4.6)o drops down quickly as b > 0.2 mu m, owing to their different symmetries. The results indicate that the pedestal can also result in mode selection in the WG-like modes. In addition, the numerical results show that the Q factors decrease 50% as the slope angle of the sidewalls varies from 90 degrees to 80 degrees. The mode characteristics of WG-like modes in the square cavity with a rectangular pedestal are also discussed. The results show that the nonsquare pedestal largely degrades the WG-like modes. (c) 2006 Optical Society of America
Resumo:
Self-ordered porous alumina films on a semi-insulated GaAs substrate were prepared in oxalic acid aqueous solutions by three-step anodization. The I-t curve of anodization process was recorded to observe time effects of anodization. Atomic force microscopy was used to investigate structure and morphology of alumina films. It was revealed that the case of oxalic acid resulted in a self-ordered porous structure, with the pore diameters of 60-70 nm, the pore density of the order of about 10(10) pore cm(-2), and interpore distances of 95-100nm. At the same time the pore size and shape change with the pore widening time. Field-enhanced dissolution model and theory of deformation relaxation combined were brought forward to be the cause of self-ordered pore structure according to I-t curve of anodization and structure characteristics of porous alumina films. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Fascinating features of porous InP array-directed assembly of InAs nanostructures are presented. Strained InAs nanostructures are grown by molecular-beam epitaxy on electrochemical etched porous InP substrate. Identical porous substrate with different pore depths defines different growth modes. Shallow pores direct the formation of closely spaced InAs dots at the bottom. Deep pores lead to progressive covering of the internal surface of pores by epitaxial material followed by pore mouth shrinking. For any depth an obvious dot depletion feature occurs on top of the pore framework. This growth method presages a pathway to engineer quantum-dot molecules and other nanoelements for fancy physical phenomena. (c) 2006 American Institute of Physics.
Resumo:
By vertical sedimentation, silica micro-spheres were grown in different shapes of concave micro-zones which were etched on a (100) p-silicon substrate. The following were found: this method can effectively raise the quality of films by avoiding cracks; the geometry of the micro-zones affects the sediment of the film; regular hexagons and triangles best facilitate the growth of photonic crystals. This method is practical for its ability to fabricate self-assembly photonic crystals in previously designed small areas.
Resumo:
In this paper, we perform systematic calculations of the stress and strain distributions in InAs/GaAs truncated pyramidal quantum dots (QDs) with different wetting layer (WL) thickness, using the finite element method (FEM). The stresses and strains are concentrated at the boundaries of the WL and QDs, are reduced gradually from the boundaries to the interior, and tend to a uniform state for the positions away from the boundaries. The maximal strain energy density occurs at the vicinity of the interface between the WL and the substrate. The stresses, strains and released strain energy are reduced gradually with increasing WL thickness. The above results show that a critical WL thickness may exist, and the stress and strain distributions can make the growth of QDs a growth of strained three-dimensional island when the WL thickness is above the critical value, and FEM can be applied to investigate such nanosystems, QDs, and the relevant results are supported by the experiments.
Resumo:
This paper reports that lnAs/In0.53Ga0.47As/AlAs resonant tunnelling diodes have been grown on InP substrates by molecular beam epitaxy. Peak to valley current ratio of these devices is 17 at 300K. A peak current density of 3kA/cm(2) has been obtained for diodes with AlAs barriers of ten monolayers, and an In0.53Ga0.47As well of eight monolayers with four monolayers of InAs insert layer. The effects of growth interruption for smoothing potential barrier interfaces have been investigated by high resolution transmission electron microscope.
Resumo:
By a combination of prepatterned substrate and self-organized growth, InAs islands are grown on the stripe-patterned GaAs (100) substrate by solid-source molecular beam epitaxy. It is found that the InAs quantum dots can be formed either on the ridge or on the sidewall of the stripes near the bottom, depending on the structure of the stripes on the patterned substrate or molecular beam epitaxy growth conditions. When a InxGa(1-x)As strained layer is grown first before InAs deposition, almost all the InAs quantum dots are deposited at the edges of the top ridge. And when the InAs deposition amount is larger, a quasi-quantum wire structure is found. The optical properties of the InAs dots on the patterned substrate are also investigated by photoluminescence. (c) 2005 Elsevier Ltd. All rights reserved.