981 resultados para microscopic polyangiitis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we report the optical and microscopic properties of self-organized InAs/GaAs quantum dots grown by molecular beam epitaxy on (1 0 0) oriented GaAs substrates. A distinctive double-peak feature of the PL spectra from quantum dots has been observed, and a bimodal distribution of dot sizes has also been confirmed by scanning tunneling microscopy (STM) image for uncapped sample. The power-dependent photoluminescence (PL) study demonstrates that the distinctive PL emission peaks are associated with the ground-state emission of islands in different size branches. The temperature-dependent PL study shows that the PL quenching temperature for different dot families is different. It is shown that the coupling between quantum dots plays a key role in unusual temperature dependence of QD photoluminescence. In addition, we have tuned the emission wavelength of InAs QDs to 1.3 mu m at room temperature. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phonon modes in spherical GaAs quantum dots (QDs) with up to 11,855 atoms (8 nm in size) are calculated by using an empirical microscopic model. The group theory is employed to reduce the computational intensity, which further allows us to investigate the quantum confinement of phonon modes with different symmetries and reveals a phenomenon that phonon modes with different symmetries have different quantum confinement effect. For zinc-blende structure, the modes with the A(1) symmetry has the strongest quantum confinement effect and the T-1 modes the weakest. This could cause a crossover of symmetries of the highest frequency from A(1) to T-2 when the size of QDs decreases. (C) 1999 Elsevier Science Ltd, All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the structural and optical characteristics of InAs quantum dots (QDs) grown on GaAs (311)A substrates. Atomic force microscopic result shows that QDs on (311)A surface exhibit a nonconventional, faceted, arrowhead-like shapes aligned in the [233] direction. The photoluminescence (PL) intensity, peak position and the full width at half maxinum (FWHM) are all closely related to the measurement temperature. The fast redshift of PL energy and monotonous decrease of linewidth with increasing temperature were observed and explained by carriers being thermally activated to the barrier produced by the wetting layer and then being retrapped and recombined in energetically lower-lying QDs states. This model explains our results well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microscopic characteristics of the GaAs(100) surface treated with P2S5/NH4OH solution has been investigated by using Auger-electron spectroscopy (AES) and x-ray photoemission spectroscopy (XPS). AES reveals that only phosphorus and sulfur, but not oxygen, are contained in the interface between passivation film and GaAs substrate. Using XPS it is found that both Ga2O3 and As2O3 are removed from the GaAs surface by the P2S5/NH4OH treatment; instead, gallium sulfide and arsenic sulfide are formed. The passivation film results in a reduction of the density of states of the surface electrons and an improvement of the electronic and optical properties of the GaAs surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The near-resonance Raman scattering of GaAs/AlAs superlattices is investigated at room temperature. Owing to the resonance enhancement of Frohlich interaction, the scattering intensity of even LO confined modes with A1 symmetry becomes much stronger than that of odd modes with B2 symmetry. The even modes were observed in the polarized spectra, while the odd modes appear in the depolarized spectra as in the off-resonance case. The second-order Raman spectra show that the polarized spectra are composed of the overtone and combinations of even modes, while the depolarized spectra are composed of the combinations of one odd mode and one even mode. The results agree well with the selection rules predicted by the microscopic theory of Raman scattering in superlattices, developed recently by Huang and co-workers. In addition, the interface modes and the combinations of interface modes and confined modes are also observed in the two configurations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infrared absorption experiments have been performed on hydrogenated and deuterated bulk boron- and aluminum-doped-Si and implanted P, As, and Sb donors in silicon. A first evidence of complex formation in bulk p-type Si is obtained and the spectra confirm the anomalous 3.3-cm-1 deuterium frequency shift with respect to boron isotopes. The ratio of the D-B-11 and D-B-10 peak areas is found to be the same as that of the two boron isotopes natural abundance. In donor-implanted silicon, a quantitative analysis of the obtained data has allowed a rough estimate of the passivating rate due to diffusing deuterium. While the frequencies of the various vibrational lines are found to be in agreement with those reported in the literature, the data on the broad line at 1660 cm-1 (H) or 1220 cm-1 (D) seem to suggest an assignment of this peak to a complex in the bulk involving some type of defect due to the implantation process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By extending our microscopic model on optical-phonon modes in quantum wells to one-dimensional (1D) quantum-well wires (QWW), the optical displacements and associated electrostatic potentials of optical-phonon modes in 1D QWW are calculated. The modes can be clearly divided into confined LO bulklike, TO bulklike modes, and extended interfacelike modes provided the bulk phonon dispersion is ignored. The character of each type of mode is illustrated with special attention to the interfacelike modes, which are hybrids of longitudinal- and transverse-optical waves from the corresponding bulk materials. Based on the numerical results, approximate analytical formulas for bulklike modes are presented. As in 2D wells, both the optical displacements and Frohlich potentials for the bulklike modes vanish at the interfaces. The finite dispersion of bulk phonons has a more pronounced effect on the 1D phonon modes because interfacelike modes show mixed characteristics of 2D interface and bulklike modes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two thermostable levels E(0.31) and E(0.58) related to Rh in Si were observed using deep level transient spectroscopy and double correlation deep level transient spectroscopy techniques. By means of thermal annealing and electron irradiation, the microscopic natures of these levels were identified for the first time. The levels E(0.31) and E(0.58) arise from by the same impurity center but have different charge states. Their microstructures are not related to a pure substitutional Rh atom, but correspond to a complex. This result is compared to our self-consistent theoretical calculation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nonlinear wave equation for a one-dimensional anharmonic crystal lattice in terms of its microscopic parameters is obtained by means of a continuum approximation. Using a small time scale transformation, the nonlinear wave equation is reduced to a combined KdV equation and its single soliton solution yields the supersonic kink form of nonlinear elastic waves for the system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dynamics of formation of defects in the annealed nominally undoped semi-insulating InP obtained by high pressure, high temperature annealing of high purity materials is proposed. Incorporated hydrogen passivates vacancy at indium site from annihilation forming fully hydrogenated indium vacancy which dissociates leaving large lattice relaxation behind, deep donors, mainly larger complexes involving phosphorus at indium site and isolated hydrogen defects are created in nominally undoped InP after annealing. Also created are acceptor levels such as vacancy at indium site. Carrier charge compensation mechanism in nominally undoped InP upon annealing at high temperature is given. Microscopic models of hydrogen related defects are given. Structural, electronic and vibrational properties of LVMs related to hydrogen as well as their temperature effect are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dynamical formation mechanism of defects in the annealed nominally undoped semi-insulating InP obtained by high pressure, high temperature annealing of high purity materials is proposed. Local vibrational modes in tenths of InP samples reveal clearly existence of complexes related to hydrogen. Complexes of vacancy at indium site with one to four hydrogen atoms and isolated hydrogen or hydrogen dimers, complexes of hydrogen with various impurities are investigated by FTIR. Hydrogen can acts as an actuator for generation of antistructure defects. Fully hydrogenated indium vacancy dissociates leaving large lattice relaxation behind, deep donors, mainly larger complexes involving phosphorus at indium site and isolated hydrogen defects are created in nominally undoped InP after annealing. Also created are acceptor levels such as vacancy at indium site. Carrier charge compensation mechanism in nominally undoped InP upon annealing at high temperature is given. Microscopic models of hydrogen related defects are given. Structural, electronic and vibrational properties of LVMs related to hydrogen as well as their temperature effect are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

First, recent studies on the information preservation (IP) method, a particle approach for low-speed micro-scale gas flows, are reviewed. The IP method was validated for benchmark issues such as Couette, Poiseuille and Rayleigh flows, compared well with measured data for typical internal flows through micro-channels and external flows past micro flat plates, and combined with the Navier-Stokes equations to be a hybrid scheme for subsonic, rarefied gas flows. Second, the focus is moved to the microscopic characteristic of China stock market, particularly the price correlation between stock deals. A very interesting phenomenon was found that showed a reverse transition behaviour between two neighbouring price changes. This behaviour significantly differs from the transition rules for atomic and molecular energy levels, and it is very helpful to understand the essential difference between stock markets and nature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three-point bending experiments were performed on as-cast and annealed samples of Zr52.5Cu17.9Ni14.6Al10Ti5 (Vit105) bulk metallic glasses over a wide range of temperatures varying from room temperature (293 K) to liquid nitrogen temperature (77 K). The results demonstrated that the free volume decrease due to annealing and/or cryogenic temperature can reduce the propensity for the formation of multiple shear bands and hence deteriorate plastic deformation ability. We clearly observed a sharp ductile-to-brittle transition (DBT), across which microscopic fracture feature transfers from micro-scale vein patterns to nano-scale periodic corrugations. Macroscopically, the corresponding fracture mode changes from ductile shear fracture to brittle tensile fracture. The shear transformation zone volume, taking into account free volume, temperature and strain rate, is proposed to quantitatively characterize the DBT behavior in fracture of metallic glasses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A superhydrophobic surface has many advantages in micro/nanomechanical applications, such as low adhesion, low friction and high restitution coefficient, etc. In this paper, we introduce a novel and simple route to fabricate superhydrophobic surfaces using ZnO nanocrystals. First, tetrapod-like ZnO nanocrystals were prepared via a one-step, direct chemical vapor deposition (CVD) approach. The nanostructured ZnO material was characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD) and the surface functionalized by aminopropyltriethoxysilane (APS) was found to be hydrophobic. Then the superhydrophobic surface was constructed by depositing uniformly ZnO hydrophobic nanoparticles (HNPs) on the Poly(dimethylsiloxane) (PDMS) film substrate. Water wettability study revealed a contact angle of 155.4 +/- 2 degrees for the superhydrophobic surface while about 110 degrees for pure smooth PDMS films. The hysteresis was quite low, only 3.1 +/- 0.3 degrees. Microscopic observations showed that the surface was covered by micro- and nano-scale ZnO particles. Compared to other approaches, this method is rather convenient and can be used to obtain a large area superhydrophobic surface. The high contact angle and low hysteresis could be attributed to the micro/nano structures of ZnO material; besides, the superhydrophobic property of the as-constructed ZnO-PDMS surface could be maintained for at least 6 months. (C) Koninklijke Brill NV, Leiden, 2010

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A theoretical model about the size-dependent interface energy between two thin films with different materials is developed by considering the chemical bonding contribution based on the thermodynamic expressions and the structure strain contribution based on the mechanical characteristics. The interface energy decreases with reducing thickness of thin films, and is determined by such available thermodynamic and mechanical parameters as the melting entropy, the melting enthalpy, the shear modulus of two materials, etc. The predicted interface energies of some metal/MgO and metal/Al2O3 interfaces based on the model are consistent with the results based on the molecular mechanics calculation. Furthermore, the interface fracture properties of Ag/MgO and Ni/Al2O3 based on the atomistic simulation are further compared with each other. The fracture strength and the toughness of the interface with the smaller structure interface energy are both found to be lower. The intrinsic relations among the interface energy, the interface strength, and the fracture toughness are discussed by introducing the related interface potential and the interface stress. The microscopic interface fracture toughness is found to equal the structure interface energy in nanoscale, and the microscopic fracture strength is proportional to the fracture toughness. (C) 2010 American Institute of Physics. [doi:10.1063/1.3501090]