981 resultados para Whitney, Eli, 1765-1825
Resumo:
Noise can be defined as unwanted sound. It may adversely affect the health and well-being of individuals. Noise sensitivity is a personality trait covering attitudes towards noise in general and a predictor of noise annoyance. Noise sensitive individuals are more affected by noise than less sensitive individuals. The determinants and characteristics related to noise sensitivity are rather poorly known. The risk of health effects caused by noise can be hypothesized to be higher for noise sensitive individuals compared to those who are not noise sensitive. A cardiovascular disease may be an example of outcomes. The general aim of the present study was to investigate the association of noise sensitivity with specific somatic and psychological factors, including the genetic component of noise sensitivity, and the association of noise sensitivity with mortality. The study was based on the Finnish Twin Cohort of same-sex twin pairs born before 1958. In 1988 a questionnaire was sent to twin pairs discordant for hypertension. 1495 individuals (688 men, 807 women) aged 31 88 years replied, including 573 twin pairs. 218 of the subjects lived in the Helsinki Metropolitan Area. Self-reported noise sensitivity, lifetime noise exposure and hypertension were obtained from the questionnaire study in 1988 and other somatic and psychological factors from the questionnaire study in 1981 for the same individuals. In addition, noise map information (1988 1992) from the Helsinki Metropolitan Area and mortality follow-up 1989 2003 were used. To evaluate the stability and validity of noise sensitivity, a new questionnaire was sent in 2002 to a sample of the subjects who had replied to the 1988 questionnaire. Of all subjects who had answered the question on noise sensitivity, 38 % were noise sensitive. Noise sensitivity was independent of noise exposure levels indicated in noise maps. Subjects with high noise sensitivity reported more transportation noise exposure than subjects with low noise sensitivity. Noise sensitive subjects reported transportation noise exposure outside the environmental noise map areas almost twice as often as non-sensitive subjects. Noise sensitivity was associated with hypertension, emphysema, use of psychotropic drugs, smoking, stress and hostility, even when lifetime noise exposure was adjusted for. Monozygotic twin pairs were more similar with regards noise sensitivity than dizygotic twin pairs, and quantitative genetic modelling indicated significant familiality. The best fitting genetic model provided an estimate of heritability of 36 %. Follow-up of subjects in the case-control study showed that cardiovascular mortality was significantly increased among noise sensitive women, but not among men. For coronary heart mortality the interaction of noise sensitivity and lifetime noise exposure was statistically significant in women. In conclusion, noise sensitivity has both somatic and psychological components. It does aggregate in families and probably has a genetic component. Noise sensitivity may be a risk factor for cardiovascular mortality in women.
Resumo:
Ornithine decarboxylase (ODC) regulates the synthesis of polyamines which are involved in many cellular functions e.g. proliferation and differentiation. Due to its critical role, ODC is a tightly regulated enzyme by antizymes and antizyme inhibitors. If the regulation fails, the activity of ODC increases and may lead to malignant transformation of a cell. Increased ODC activity is found in many common cancers, including colon, prostate, and breast cancer. In a transformed cell, dynamics of the actin cytoskeleton is disturbed. A small G-protein, RhoA regulates organization of the cytoskeleton, and its overactivity increases malignant potential of the cell. The present results indicate that covalent attachment of polyamines by transglutaminase is a physiological means of regulating the activity of RhoA. The translocation of RhoA to the plasma membrane, where it exerts its activity is dependent on the presence of catalytically active ODC. As the overactivity of ODC and RhoA are implicated in cell transformation, the results provide a mechanistic explanation of the interrelationship between the polyamine metabolism and the reorganization of the actin cytoskeleton occurring in cancer cells. ODC and polyamines have also an important role in the function of central nervous system. They participate in the regulation of brain morphogenesis in embryos. In adult nervous tissue, polyamines regulate K+ and glutamate channels. K+ inward rectifying channels control membrane potentials and NMDA-type glutamate receptors (NMDAR) regulate synaptic plasticity. High ODC activity and polyamine levels are considered important in the development of ischemic brain damage and they are implicated in the pathogenesis of Alzheimer s disease (AD). A homolog of ODC was cloned from a human brain cDNA library, and several alternatively spliced variants were detected in human brain and testis. The novel protein was nevertheless devoid of ODC catalytic activity. It was subsequently found to be a novel inductor of ODC activity and polyamine synthesis, called antizyme inhibitor 2 (AZIN2). The accumulation of AZIN2 in vesicle-like formations along the axons and beneath the plasma membrane of neurons as well as in steroid hormone producing Leydig cells and luteal cells of the gonads implies that AZIN2 plays a role in secretion and vesicle trafficking. An accumulation of AZIN2 was detected also in specimens of AD brains. This increased expression of AZIN2 was specific for AD and was not found in brains with other neurodegenerative diseases including CADASIL or dementia with Lewy bodies.
Resumo:
Intracranial artery aneurysms (IAs) are estimated to be present in 2.3% of the population. A rupture of an IA causes subarachnoid hemorrhage, with up to 50% mortality. The annual low rupture risk of an IA indicates that most IAs never rupture. The current treatment options are invasive and somewhat risky. Thus rupture-prone IAs should be identified and this requires a better understanding of the IA wall pathobiology. Inflammatory cell infiltrations have been found to precede IA rupture, indicating the role of inflammation in IA wall degeneration and rupture. The complement system is a key mediator of inflammation and house-hold processing of injured tissue. This study aimed at identifying the role of complement activation in IA wall degeneration and the complement activators involved and determining how the complement system is regulated in the IA wall. In immunostainings, the end-product of complement activation, the terminal complement complex (TCC), was located mainly in the outer part of the IA wall, in areas that had also sustained loss of cells. In electron microscopy, the area of maximum TCC accumulation contained cellular debris and evidence of both apoptotic and necrotic cell death. Complement activation correlated with IA wall degeneration and rupture, de-endothelialization, and T-cell and CD163-positive macrophage infiltration. The complement system was found to become activated in all IAs by the classical pathway, with recruitment of alternative pathway amplification. Of the potential activators immunoglobulins G and M and oxidatively modified lipids were found in large areas. Lipid accumulation was observed to clearly colocalize with TCC and C-reactive protein. In the luminal parts of the IA wall, complement activation was limited by cellular expression of protectin (CD59) and extracellular matrix-bound inhibitors, C4b binding protein and factor H whereas the outer part of the wall lacked cells expressing protectin as well as matrix-bound factor H. In single nucleotide polymorphism-analysis, age-related macular degeneration-associated factor H Y402H polymorphism did not associate with the presence of IAs or their rupture The data suggest that complement activation and TCC formation are involved in IA wall degeneration and rupture. Complement seems to become activated by more than one specific activator. The association of complement with de-endothelialization and expression of several complement activators indicate a possible role of endothelial dysfunction and/or impaired clearance mechanisms. Impaired complement regulation seems to be associated with increased complement activation in IA walls. These results stress the role of chronic inflammation in IA wall pathobiology and the regulatory role of complement within this process. Imaging inflammation would possibly enhance the diagnostics of rupture-prone IAs, and targeting IA treatment to prevent chronic inflammation might improve IA treatment in the future.
Resumo:
l-r: Thekla Oppenheimer-Benedick, Jenny Oppenheimer-Frank, Fanny Oppenheimer and Adele Oppenheimer-Nathan
Resumo:
l-r: Sisters Adele Oppenheimer-Nathan, Thekla Oppenheimer-Benedick, Jenny Oppenheimer-Frank and their mother Fanny Oppenheimer
Resumo:
The role of the immune system is to protect an organism against pathogens while maintaining tolerance against self. T cells are an essential component of the immune system and they develop in the thymus. The AIRE (autoimmune regulator) gene product plays an important role in T cell development, as it promotes expression of peripheral tissue antigens in the thymus. Developing T cells, thymocytes, which recognize self-antigens with high affinity are deleted. However, this deletion process is not perfect and not all autoreactive T cells are destroyed. When the distinction between self and non-self fails, tolerance breaks and the immune system attacks the host s own tissues. This results in autoimmunity. Regulatory T cells contribute to the maintenance of self-tolerance. They can actively suppress the function of autoreactive cells. Several populations of cells with regulatory properties have been described, but the best characterized population is the natural regulatory T cells (Treg cells), which develop in the thymus and express the transcription factor FOXP3. The thymic development of Treg cells in humans is the subject of this thesis. Thymocytes at different developmental stages were analyzed using flow cytometry. The CD4-CD8- double-negative (DN) thymocytes are the earliest T cell precursors in the T cell lineage. My results show that the Treg cell marker FOXP3 is up-regulated already in a subset of these DN thymocytes. FOXP3+ cells were also found among the more mature CD4+CD8+ double-positive (DP) cells and among the CD4+ and CD8+ single-positive (SP) thymocytes. The different developmental stages of the FOXP3+ thymocytes were isolated and their gene expression examined by quantitative PCR. T cell receptor (TCR) repertoire analysis was used to compare these different thymocyte populations. My data show that in humans commitment to the Treg cell lineage is an early event and suggest that the development of Treg cells follows a linear developmental pathway, FOXP3+ DN precursors evolving through the DP stage to become mature CD4+ Treg cells. Most T cells have only one kind of TCR on their cell surface, but a small fraction of cells expresses two different TCRs. My results show that the expression of two different TCRs is enriched among Treg cells. Furthermore, both receptors were capable of transmitting signals when bound by a ligand. By extrapolating flow cytometric data, it was estimated that the majority of peripheral blood Treg cells are indeed dual-specific. The high frequency of dual-specific cells among human Treg cells suggests that dual-specificity has a role in directing these cells to the Treg cell lineage. It is known that both genetic predisposition and environmental factors influence the development of autoimmunity. It is also known that the dysfunction or absence of Treg cells leads to the development of autoimmune manifestations. APECED (autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy) is a rare monogenic autoimmune disease, caused by mutations in the AIRE gene. In the absence of AIRE gene product, deletion of self-specific T cells is presumably disturbed and autoreactive T cells escape to the periphery. I examined whether Treg cells are also affected in APECED. I found that the frequency of FOXP3+ Treg cells and the level of FOXP3 expression were significantly lower in APECED patients than in controls. Additionally, when studied in cell cultures, the suppressive capacity of the patients' Treg cells was impaired. Additionally, repertoire analysis showed that the TCR repertoire of Treg cells was altered. These results suggest that AIRE contributes to the development of Treg cells in humans and the selection of Treg cells is impaired in APECED patients. In conclusion, my thesis elucidates the developmental pathway of Treg cells in humans. The differentiation of Tregs begins early during thymic development and both the cells dual-specificity and AIRE probably affect the final commitment of Treg cells.
Resumo:
Developmental dyslexia is a specific reading disability, which is characterised by unexpected difficulty in reading, spelling and writing despite adequate intelligence, education and social environment. It is the most common childhood learning disorder affecting 5-10 % of the population and thus constitutes the largest portion of all learning disorders. It is a persistent developmental failure although it can be improved by compensation. According to the most common theory, the deficit is in phonological processing, which is needed in reading when the words have to be divided into phonemes, or distinct sound elements. This occurs in the lowest level of the hierarchy of the language system and disturbs processes in higher levels, such as understanding the meaning of words. Dyslexia is a complex genetic disorder and previous studies have found nine locations in the genome that associate with it. Altogether four susceptibility genes have been found and this study describes the discovery of the first two of them, DYX1C1 and ROBO1. The first clues were obtained from two Finnish dyslexic families that have chromosomal translocations which disrupt these genes. Genetic analyses supported their role in dyslexia: DYX1C1 associates with dyslexia in the Finnish population and ROBO1 was linked to dyslexia in a large Finnish pedigree. In addition a genome-wide scan in Finnish dyslexic families was performed. This supported the previously detected dyslexia locus on chromosome 2 and revealed a new locus on chromosome 7. Dyslexia is a neurological disorder and the neurobiological function of the susceptibility genes DYX1C1 and ROBO1 are consistent with this. ROBO1 is an axon guidance receptor gene, which is involved in axon guidance across the midline in Drosophila and axonal pathfinding between the two hemispheres via the corpus callosum, as well as neuronal migration in the brain of mice. The translocation and decreased ROBO1 expression in dyslexic individuals indicate that two functional copies of ROBO1 gene are required in reading. DYX1C1 was a new gene without a previously known function. Inhibition of Dyx1c1 expression showed that it is needed in normal brain development in rats. Without Dyx1c1 protein, the neurons in the developing brain will not migrate to their final position in the cortex. These two dyslexia susceptibility genes DYX1C1 and ROBO1 revealed two distinct neurodevelopmental mechanisms of dyslexia, axonal pathfinding and neuronal migration. This study describes the discovery of the genes and our research to clarify their role in developmental dyslexia.
Resumo:
Meckel syndrome (MKS, MIM 249000) is an autosomal recessive developmental disorder causing death in utero or shortly after birth. The hallmarks of the disease are cystic kidney dysplasia and fibrotic changes of the liver, occipital encephalocele with or without hydrocephalus and polydactyly. Other anomalies frequently seen in the patients are incomplete development of the male genitalia, club feet and cleft lip or palate. The clinical picture has been well characterized in the literature while the molecular pathology underlying the disease has remained unclear until now. In this study we identified the first MKS gene by utilizing the disease haplotypes in Finnish MKS families linked to the MKS1 locus on chromosome 17q23 (MKS1) locus. Subsequently, the genetic heterogeneity of MKS was established in the Finnish families. Mutations in at least four different genes can cause MKS. These genes have been mapped to the chromosomes 17q23 (MKS1), 11q13 (MKS2), 8q22 (MKS3) and 9q33 (MKS4). Two of these genes have been identified so far: The MKS1 gene (this work) and the MKS3 gene. The identified MKS1 gene was initially a novel human gene which is conserved among species. We found three different MKS mutations, one of them being the Finnish founder mutation. The information available from MKS1 orthologs in other species convinced us that the MKS1 gene is required for normal ciliogenesis. Defects of the cilial system in other human diseases and model organisms actually cause phenotypic features similar to those seen in MKS patients. The MKS3 (TMEM67) gene encodes a transmembrane protein and the gene maps to the syntenic Wpk locus in the rat, which is a model with polycystic kidney disease, agenesis of the corpus callosum and hydrocephalus. The available information from these two genes suggest that MKS1 would encode a structural component of the centriole required for normal ciliary functions, and MKS3 would be a transmembrane component most likely required for normal ciliary sensory signaling. The MKS4 locus was localized to chromosme 9q32-33 in this study by using an inbred Finnish family with two affected and two healthy children. This fourth locus contains TRIM32 gene, which is associated to another well characterized human ciliopathy, Bardet Biedl syndrome (BBS). Future studies should identify the MKS4 gene on chromosome 9q and confirm if there are more than two genes causing MKS Finnish families. The research on critical signaling pathways in organogenesis have shown that both Wnt and Hedgehog pathways are dependent on functional cilia. The MKS gene products will serve as excellent model molecules for more detailed studies of the functional role of cilia in organogenesis in more detail.
Resumo:
Psoriasis is a chronic skin disease characterized by abnormal keratinocyte proliferation and differentiation, neoangiogenesis and inflammation. Its etiology is multifactorial, as both the environmental and genetic factors have an important role in the pathogenesis of psoriasis. The exact disease mechanism behind psoriasis still remains unknown. The most important genetic susceptibility region for psoriasis has been located to PSORS1 locus in chromosome 6. The area includes multiply good candidate genes but the strong linkage disequilibrium between them has made genetic studies difficult. One of the candidate genes in PSORS1 is CCHCR1, which has a psoriasis-associated gene form CCHCR1*WWCC. The aim of the study was to elucidate the function of CCHCR1 and its potential role in the pathogenesis of psoriasis. In this study, transgenic mice expressing either the healthy or psoriasis-associated gene form of CCHCR1 were engineered and characterized. Mice were phenotypically normal but their gene expression profiles revealed many similarities to that observed in human psoriatic skin. In addition, the psoriasis-associated gene form had specific impacts on the expression of many genes relevant to the pathogenesis of psoriasis. We also challenged the skin of CCHCR1 transgenic mice with wounding or 12-O-tetradecanoylphorbol-13-acetate (TPA). The experiments revealed that CCHCR1 impacts on keratinocyte proliferation by limiting it. In addition, we demonstrated that CCHCR1 has a role in steroidogenesis and showed that both CCHCR1 forms promote synthesis of steroids. Also many agents relevant either for steroidogenesis or cell proliferation were shown to regulate the expression level of CCHCR1. The present study showed that CCHCR1 has functional properties relevant in the context of psoriasis. Firstly, CCHCR1 affects proliferation of keratinocytes as it may function as a negative regulator of keratinocyte proliferation. Secondly, CCHCR1 also has a role in steroidogenesis, a function relevant both in the pathogenesis of psoriasis and regulation of cell proliferation. This study suggests that aberrant function of CCHCR1 may lead to abnormal keratinocyte proliferation which is a key feature of psoriatic epidermis.
Resumo:
Primary pulmonary hypertension (PPH), or according to the recent classification idiopathic pulmonary hypertension (IPAH), is a rare, progressive disease of pulmonary vasculature leading to pulmonary hypertension and right heart failure. Most of the patients are sporadic but in about 6% of cases the disease is familial (FPPH). In 2000 two different groups identified the gene predisposing to PPH. This gene, Bone morphogenetic protein receptor type 2 (BMPR2), encodes a subunit of transforming growth factor β (TGF-β) receptor complex. There is a genetic connection between PPH and hereditary hemorrhagic telangiectasia (HHT), a bleeding disorder characterized by local telangiectasias and sometimes with pulmonary hypertension. In HHT, mutations in ALK1 (activin like kinase type 1) and Endoglin, another members of the TGF-β signaling pathway are found. In this study we identified all of the Finnish PPH patients for the years 1986-1999 using the hospital discharge registries of Finnish university hospitals. During this period we found a total of 59 confirmed PPH patients: 55 sporadic and 4 familial representing 3 different families. In 1999 the prevalence of PPH was 5.8 per million and the annual incidence varied between 0.2-1.3 per million. Among 28 PPH patients studied, heterozygous BMPR2 mutations were found in 12% (3/26) of sporadic patients and in 33% of the PPH families (1/3). All the mutations found were different. Large deletions of BMPR2 were excluded by single-stranded chain polymomorphism analysis. As a candidate gene approach we also studied ALK1, Endoglin, Bone Morphogenetic Receptor Type IA (BMPR1A or ALK3), Mothers Against Decapentaplegic Homolog 4 (SMAD4) and Serotonine Transporter Gene (SLC6A4) using single-strand conformational polymorphism (SSCP) analysis and direct sequencing. Among patients and family members studied, we found two mutations in ALK1 in two unrelated samples. We also identified all the HHT patients treated at the Department of Otorhinolaryngology at Helsinki University Central Hospital between the years of 1990-2005 and 8 of the patients were studied for Endoglin and ALK1 mutations using direct sequencing. A total of seven mutations were found and all the mutations were different. The absence of a founder mutation in the Finnish population in both PPH and HHT was somewhat surprising. This suggests that the mutations of BMPR2, ALK1 and Endoglin are quite young and the older mutations have been lost due to repetitive genetic bottlenecks and/or negative selection. Also, other genes than BMPR2 may be involved in the pathogenesis of PPH. No founder mutations were found in PPH or HHT and thus no simple genetic test is available for diagnostics.
Resumo:
Infection by Epstein-Barr virus (EBV) occurs in approximately 95% of the world s population. EBV was the first human virus implicated in oncogenesis. Characteristic for EBV primary infection are detectable IgM and IgG antibodies against viral capsid antigen (VCA). During convalescence the VCA IgM disappears while the VCA IgG persists for life. Reactivations of EBV occur both among immunocompromised and immunocompetent individuals. In serological diagnosis, measurement of avidity of VCA IgG separates primary from secondary infections. However, in serodiagnosis of mononucleosis it is quite common to encounter, paradoxically, VCA IgM together with high-avidity VCA IgG, indicating past immunity. We determined the etiology of this phenomenon and found that, among patients with cytomegalovirus (CMV) primary infection a large proportion (23%) showed antibody profiles of EBV reactivation. In contrast, EBV primary infection did not appear to induce immunoreactivation of CMV. EBV-associated post-transplant lymphoproliferative disease (PTLD) is a life threatening complication of allogeneic stem cell or solid organ transplantation. PTLD may present with a diverse spectrum of clinical symptoms and signs. Due to rapidity of PTLD progression especially after stem cell transplantation, the diagnosis must be obtained quickly. Pending timely detection, the evolution of the fatal disease may be halted by reduction of immunosuppression. A promising new PTLD treatment (also in Finland) is based on anti-CD-20 monoclonal antibodies. Diagnosis of PTLD has been demanding because of immunosuppression, blood transfusions and the latent nature of the virus. We set up in 1999 to our knowledge first in Finland for any microbial pathogen a real-time quantitative PCR (qPCR) for detection of EBV DNA in blood serum/plasma. In addition, we set up an in situ hybridisation assay for EBV RNA in tissue sections. In collaboration with a group of haematologists at Helsinki University Central Hospital we retrospectively determined the incidence of PTLD among 257 allogenic stem cell transplantations (SCT) performed during 1994-1999. Post-mortem analysis revealed 18 cases of PTLD. From a subset of PTLD cases (12/18) and a series of corresponding controls (36), consecutive samples of serum were studied by the new EBV-qPCR. All the PTLD patients were positive for EBV-DNA with progressively rising copy numbers. In most PTLD patients EBV DNA became detectable within 70 days of SCT. Of note, the appearance of EBV DNA preceded the PTLD symptoms (fever, lymphadenopathy, atypical lymphocytes). Among the SCT controls, EBV DNA occurred only sporadically, and the EBV-DNA levels remained relatively low. We concluded that EBV qPCR is a highly sensitive (100%) and specific (96%) new diagnostic approach. We also looked for and found risk factors for the development of PTLD. Together with a liver transplantation group at the Transplantation and Liver Surgery Clinic we wanted to clarify how often and how severely do EBV infections occur after liver transplantation. We studied by the EBV qPCR 1284 plasma samples obtained from 105 adult liver transplant recipients. EBV DNA was detected in 14 patients (13%) during the first 12 months. The peak viral loads of 13 asymptomatic patients were relatively low (<6600/ml), and EBV DNA subsided quickly from circulation. Fatal PTLD was diagnosed in one patient. Finally, we wanted to determine the number and clinical significance of EBV infections of various types occurring among a large, retrospective, nonselected cohort of allogenic SCT recipients. We analysed by EBV qPCR 5479 serum samples of 406 SCT recipients obtained during 1988-1999. EBV DNA was seen in 57 (14%) patients, of whom 22 (5%) showed progressively rising and ultimately high levels of EBV DNA (median 54 million /ml). Among the SCT survivors, EBV DNA was transiently detectable in 19 (5%) asymptomatic patients. Thereby, low-level EBV-DNA positivity in serum occurs relatively often after SCT and may subside without specific treatment. However, high molecular copy numbers (>50 000) are diagnostic for life-threatening EBV infection. We furthermore developed a mathematical algorithm for the prediction of development of life-threatening EBV infection.
Resumo:
In the ovary, two new members of the large TGF-beta superfamily of growth factors were discovered in the 1990s. The oocyte was shown to express two closely related growth factors that were named growth differentiation factor 9 (GDF-9) and growth differentiation factor 9B (GDF-9B). Both of these proteins are required for normal ovarian follicle development although their individual significance varies between species. GDF-9 and GDF-9B mRNAs are expressed in the human oocytes from the primary follicle stage onwards. This thesis project was aimed to define the signalling mechanisms utilized by the oocyte secreted GDF-9. We used primary cultures of human granulosa luteal cells (hGL) as our cell model, and recombinant adenovirus-mediated gene transfer in manipulating the TGF-b family signalling cascade molecules in these cells. Overexpression of the constitutively active forms of the seven type I receptors, the activin receptor-like kinases 1-7 (ALK1-7), using recombinant adenoviruses caused a specific activation of either the Smad1 or Smad2 pathway proteins depending on the ALK used. Activation of both Smad1 and Smad2 proteins also stimulated the expression of dimeric inhibin B protein in hGL cells. Treatment with recombinant GDF-9 protein induced the specific activation of the Smad2 pathway and stimulated the expression of inhibin betaB subunit mRNA as well as inhibin B protein secretion in our cell model. Recombinant GDF-9 also activated the Smad3-responsive CAGA-luciferase reported construct, and the GDF-9 response in hGL cells was markedly potentiated upon the overexpression of Alk5 by adenoviral gene transduction. Alk5 overexpression also enhanced the GDF-9 induced inhibin B secretion by these cells. Similarly, in a mouse teratocarcinoma cell line P19, GDF-9 could activate the Smad2/3 pathway, and overexpression of ALK5 in COS7 cells rendered them responsive to GDF-9. Furthermore, transfection of rat granulosa cells with small interfering RNA for ALK5 or overexpression of the inhibitory Smad7 resulted in dose-dependent suppression of GDF-9 effects. In conclusion, this thesis shows that both Smad1 and Smad2 pathways are involved in controlling the regulation of inhibin B secretion. Therefore, in addition to endocrine control of inhibin production by the pituitary gonadotropins, also local paracrine factors within in the ovary, like the oocyte-derived growth factors, may contribute to controlling inhibin secretion. This thesis shows as well that like other TGF-beta family ligands, also GDF-9 signalling is mediated by the canonical type I and type II receptors with serine/threonine kinase activity, and the intracellular transcription factors, the Smads. Although GDF-9 binds to the BMP type II receptor, its downstream actions are specifically mediated by the type I receptor, ALK5, and the Smad2 and Smad3 proteins.
Resumo:
Diseases caused by the Lancefield group A streptococcus, Streptococcus pyogenes, are amongst the most challenging to clinicians and public health specialists alike. Although severe infections caused by S. pyogenes are relatively uncommon, affecting around 3 per 100,000 of the population per annum in developed countries, the case fatality is high relative to many other infections. Despite a long scientific tradition of studying their occurrence and characteristics, many aspects of their epidemiology remain poorly understood, and potential control measures undefined. Epidemiological studies can play an important role in identifying host, pathogen and environmental factors associated with risk of disease, manifestation of particular syndromes or poor survival. This can be of value in targeting prevention activities, as well directing further basic research, potentially paving the way for the identification of novel therapeutic targets. The formation of a European network, Strep-EURO, provided an opportunity to explore epidemiological patterns across Europe. Funded by the Fifth Framework Programme of the European Commission s Directorate-General for Research (QLK2.CT.2002.01398), the Strep-EURO network was launched in September 2002. Twelve participants across eleven countries took part, led by the University of Lund in Sweden. Cases were defined as patients with S. pyogenes isolated from a normally sterile site, or non-sterile site in combination with clinical signs of streptococcal toxic shock syndrome (STSS). All participating countries undertook prospective enhanced surveillance between 1st January 2003 and 31st December 2004 to identify cases diagnosed during this period. A standardised surveillance dataset was defined, comprising demographic, clinical and risk factor information collected through a questionnaire. Isolates were collected by the national reference laboratories and characterised according to their M protein using conventional serological and emm gene typing. Descriptive statistics and multivariable analyses were undertaken to compare characteristics of cases between countries and identify factors associated with increased risk of death or development of STSS. Crude and age-adjusted rates of infection were calculated for each country where a catchment population could be defined. The project succeeded in establishing the first European surveillance network for severe S. pyogenes infections, with 5522 cases identified over the two years. Analysis of data gathered in the eleven countries yielded important new information on the epidemiology of severe S. pyogenes infections in Europe during the 2000s. Comprehensive epidemiological data on these infections were obtained for the first time from France, Greece and Romania. Incidence estimates identified a general north-south gradient, from high to low. Remarkably similar age-standardised rates were observed among the three Nordic participants, between 2.2 and 2.3 per 100,000 population. Rates in the UK were higher still, 2.9/100,000, elevated by an upsurge in drug injectors. Rates from these northern countries were reasonably close to those observed in the USA and Australia during this period. In contrast, rates of reports in the more central and southern countries (Czech Republic, Romania, Cyprus and Italy) were substantially lower, 0.3 to 1.5 per 100,000 population, a likely reflection of poorer uptake of microbiological diagnostic methods within these countries. Analysis of project data brought some new insights into risk factors for severe S. pyogenes infection, especially the importance of injecting drug users in the UK, with infections in this group fundamentally reshaping the epidemiology of these infections during this period. Several novel findings arose through this work, including the high degree of congruence in seasonal patterns between countries and the seasonal changes in case fatality rates. Elderly patients, those with compromised immune systems, those who developed STSS and those infected with an emm/M78, emm/M5, emm/M3 or emm/M1 were found to be most likely to die as a result of their infection, whereas those diagnosed with cellulitis, septic arthritis, puerperal sepsis or with non-focal infection were associated with low risk of death, as were infections occurring during October. Analysis of augmented data from the UK found use of NSAIDs to be significantly associated with development of STSS, adding further fuel to the debate surrounding the role of NSAIDs in the development of severe disease. As a largely community-acquired infection, occurring sporadically and diffusely throughout the population, opportunities for control of severe infections caused by S. pyogenes remain limited, primarily involving contact chemoprophylaxis where clusters arise. Analysis of UK Strep-EURO data were used to quantify the risk to household contacts of cases, forming the basis of national guidance on the management of infection. Vaccines currently under development could offer a more effective control programme in future. Surveillance of invasive infections caused by S. pyogenes is of considerable public health importance as a means of identifying long and short-term trends in incidence, allowing the need for, or impact of, public health measures to be evaluated. As a dynamic pathogen co-existing among a dynamic population, new opportunities for exploitation of its human host are likely to arise periodically, and as such continued monitoring remains essential.
Resumo:
Streptococcus pyogenes (group A streptococcus) is an important human pathogen, causing a wide array of infections ranging in severity. The majority of S. pyogenes infections are mild upper respiratory tract or skin infections. Severe, invasive infections, such as bacteraemia, are relatively rare, but constitute a major global burden with a high mortality. Certain streptococcal types are associated with a more severe disease and higher mortality. Bacterial, non-necrotizing cellulitis and erysipelas are localised infections of the skin, and although they are usually not life-threatening, they have a tendency to recur and therefore cause substantial morbidity. Despite several efforts aimed at developing an effective and safe vaccine against S. pyogenes infections, no vaccine is yet available. In this study, the epidemiology of invasive S. pyogenes infections in Finland was described over a decade of national, population-based surveillance. Recent trends in incidence, outcome and bacterial types were investigated. The beta-haemolytic streptococci causing cellulitis and erysipelas infections in Finland were studied in a case-control study. Bacterial isolates were characterised using both conventional and molecular typing methods, such as the emm typing, which is the most widely used typing method for beta-haemolytic streptococci. The incidence of invasive S. pyogenes disease has had an increasing trend during the past ten years in Finland, especially from 2006 onwards. Age- and sex-specific differences in the incidence rate were identified, with men having a higher incidence than women, especially among persons aged 45-64 years. In contrast, more infections occurred in women aged 25-34 years than men. Seasonal patterns with occasional peaks during the midsummer and midwinter were observed. Differences in the predisposing factors and underlying conditions of patients may contribute to these distinctions. Case fatality associated with invasive S. pyogenes infections peaked in 2005 (12%) but remained at a reasonably low level (8% overall during 2004-2007) compared to that of other developed countries (mostly exceeding 10%). Changes in the prevalent emm types were associated with the observed increases in incidence and case fatality. In the case-control study, acute bacterial non-necrotizing cellulitis was caused predominantly by Streptococcus dysgalactiae subsp. equisimilis, instead of S. pyogenes. The recurrent nature of cellulitis became evident. This study adds to our understanding of S. pyogenes infections in Finland and provides a basis for comparison to other countries and future trends. emm type surveillance and outcome analyses remain important for detecting such changes in type distribution that might lead to increases in incidence and case fatality. Bacterial characterisation serves as a basis for disease pathogenesis studies and vaccine development.
Resumo:
Adult-type hypolactasia (primary lactose malabsorption, lactase non-persistence) is the most common enzyme deficiency worldwide, and manifests with symptoms of lactose intolerance such as abdominal pain, gas formation and diarrhea. In humans with adult-type hypolactasia, lactase activity is high at birth, but declines during childhood to about one-tenth of the activity at birth. In 2002, a one base polymorphism C/T-13910, located 14 kilobases from the starting codon of the lactase-phlorizin hydrolase (LPH) gene was observed to be associated with the persistence of lactase activity. The T-13910 allele (C/T-13910 and T/T-13910 genotypes) associates with persistence of lactase activity throughout life, whereas the C/C-13910 genotype associates with adult-type hypolactasia. In this thesis work, the timing and mechanism of decline of lactase enzyme activity during development was studied using the C/T-13910 polymorphism as a molecular marker. We observed an excellent correlation between low lactase activity and the C/C-13910 genotype in all subjects > 12 years of age, irrespective their ethnicity. In children of African origin, the lactase activity declined somewhat earlier than among Finnish children. Furthermore, we observed an increasing imbalance in the relative lactase mRNA expression from the C-13910 and T-13910 alleles in Finnish children beginning from five years of age. The genetic test for adult-type hypolactasia showed a sensitivity of 93% and a specificity of 100% in the Finnish children and adolescents > 12 years of age. The relation of milk consumption and the milk-related abdominal complaints to the C/T-13910 genotypes associated with lactase persistence/non-persistence was studied by a questionnaire-based approach in > 2100 Finns. Both Finnish children and adults with the C/C-13910 genotype consumed significantly less dairy products compared to those with the C/T-13910 and T/T-13910 genotypes. Flatulence was the only of the abdominal symptoms of lactose intolerance that subjects with the C/C-13910 genotype reported significantly more often than those with the C/T-13910 and T/T-13910 genotypes. A minor proportion (<10%) of subjects with the C/C-13910 genotype, nevertheless, reported drinking milk without any symptoms afterwards. There was no association between cow's milk allergy starting as a newborn and adult-type hypolactasia. In an association study an increased risk of colorectal cancer was observed among those with molecular diagnosis of adult-type hypolactasia. It warrants further studies to clarify whether the increased risk observed in the Finnish population is associated with lactose or decreased intake of dairy products in these subjects.