995 resultados para Nonlinear optical
Resumo:
We report experimental and numerical results showing how certain N-dimensional dynamical systems are able to exhibit complex time evolutions based on the nonlinear combination of N-1 oscillation modes. The experiments have been done with a family of thermo-optical systems of effective dynamical dimension varying from 1 to 6. The corresponding mathematical model is an N-dimensional vector field based on a scalar-valued nonlinear function of a single variable that is a linear combination of all the dynamic variables. We show how the complex evolutions appear associated with the occurrence of successive Hopf bifurcations in a saddle-node pair of fixed points up to exhaust their instability capabilities in N dimensions. For this reason the observed phenomenon is denoted as the full instability behavior of the dynamical system. The process through which the attractor responsible for the observed time evolution is formed may be rather complex and difficult to characterize. Nevertheless, the well-organized structure of the time signals suggests some generic mechanism of nonlinear mode mixing that we associate with the cluster of invariant sets emerging from the pair of fixed points and with the influence of the neighboring saddle sets on the flow nearby the attractor. The generation of invariant tori is likely during the full instability development and the global process may be considered as a generalized Landau scenario for the emergence of irregular and complex behavior through the nonlinear superposition of oscillatory motions
Resumo:
A variational method for Hamiltonian systems is analyzed. Two different variationalcharacterization for the frequency of nonlinear oscillations is also suppliedfor non-Hamiltonian systems
Resumo:
The analysis of multi-modal and multi-sensor images is nowadays of paramount importance for Earth Observation (EO) applications. There exist a variety of methods that aim at fusing the different sources of information to obtain a compact representation of such datasets. However, for change detection existing methods are often unable to deal with heterogeneous image sources and very few consider possible nonlinearities in the data. Additionally, the availability of labeled information is very limited in change detection applications. For these reasons, we present the use of a semi-supervised kernel-based feature extraction technique. It incorporates a manifold regularization accounting for the geometric distribution and jointly addressing the small sample problem. An exhaustive example using Landsat 5 data illustrates the potential of the method for multi-sensor change detection.
Resumo:
Tumor Endothelial Marker-1 (TEM1/CD248) is a tumor vascular marker with high therapeutic and diagnostic potentials. Immuno-imaging with TEM1-specific antibodies can help to detect cancerous lesions, monitor tumor responses, and select patients that are most likely to benefit from TEM1-targeted therapies. In particular, near infrared(NIR) optical imaging with biomarker-specific antibodies can provide real-time, tomographic information without exposing the subjects to radioactivity. To maximize the theranostic potential of TEM1, we developed a panel of all human, multivalent Fc-fusion proteins based on a previously identified single chain antibody (scFv78) that recognizes both human and mouse TEM1. By characterizing avidity, stability, and pharmacokinectics, we identified one fusion protein, 78Fc, with desirable characteristics for immuno-imaging applications. The biodistribution of radiolabeled 78Fc showed that this antibody had minimal binding to normal organs, which have low expression of TEM1. Next, we developed a 78Fc-based tracer and tested its performance in different TEM1-expressing mouse models. The NIR imaging and tomography results suggest that the 78Fc-NIR tracer performs well in distinguishing mouse- or human-TEM1 expressing tumor grafts from normal organs and control grafts in vivo. From these results we conclude that further development and optimization of 78Fc as a TEM1-targeted imaging agent for use in clinical settings is warranted.
Resumo:
Purpose: To determine whether the need for retreatment after an initial phase of 3 monthly intravitreal injections of ranibizumab shows an intra-individual regular rhythm and to what degree it varies between different patients. Methods: Prospective study with 42 patients with exudative AMD, treatment naïve. Loading dose of 3 monthly doses of ranibizumab (0,5 mg), followed by a 12 months pro re nata (PRN) regimen according to early exudative signs on HD-OCT Cirrus, Zeiss. The follow-up visits were intensified (week 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, etc after each injection) in order to detect recurrences early, and injection followed within 3 days in cases of subretinal fluid, cysts, or central thickness increase of>50microns. Intervals were calculated between injections for the 12 month follow-up with PRN treatment. Variability was expressed as standard deviation (SD). Results: Visual acuity (VA) improved from a mean ETDRS score of 61.6 (SD 10.8) at baseline to 68.0 (SD 10.2) at month 3 and to 74.7(SD 9.0) at month 12. The 15 patients who have already completed the study showed maintenance of the VA improvement. Central foveal thickness improved from a mean value of 366 microns (baseline) to 253 microns (month 3), well maintained thereafter. Mean number of injections was 8.8 (SD 3.5,range 0-12) per 12 months of follow-up (after 3 doses), with mean individual treatment-recurrence (TR) intervals ranging from 28->365 days (mean 58). Intraindividual variability of TR intervals (SD) was 7.1 days as a mean value (range 1.7¡V22.6). It ranged within 20% of the mean intra-individual interval for 30 (91%) and within 15% for 21 patients (64%). The first interval was within 1 week of the mean intra-individual interval in 64% and within 2 weeks in 89% of patients. Conclusions: The majority of AMD patients showed a relatively stable rhythm for PRN injections of ranibizumab after initial loading phase, associated with excellent functional/anatomical results. The initial interval last loading dose-first recurrence may have a predictive value for further need of treatment, potentially facilitating follow-up and patient care.
Resumo:
In this paper I explore the issue of nonlinearity (both in the datageneration process and in the functional form that establishes therelationship between the parameters and the data) regarding the poorperformance of the Generalized Method of Moments (GMM) in small samples.To this purpose I build a sequence of models starting with a simple linearmodel and enlarging it progressively until I approximate a standard (nonlinear)neoclassical growth model. I then use simulation techniques to find the smallsample distribution of the GMM estimators in each of the models.
Resumo:
The siderophore pyochelin is made by a thiotemplate mechanism from salicylate and two molecules of cysteine. In Pseudomonas aeruginosa, the first cysteine residue is converted to its D-isoform during thiazoline ring formation whereas the second cysteine remains in its L-configuration, thus determining the stereochemistry of the two interconvertible pyochelin diastereoisomers as 4'R, 2''R, 4''R (pyochelin I) and 4'R, 2''S, 4''R (pyochelin II). Pseudomonas fluorescens CHA0 was found to make a different stereoisomeric mixture, which promoted growth under iron limitation in strain CHA0 and induced the expression of its biosynthetic genes, but was not recognized as a siderophore and signaling molecule by P. aeruginosa. Reciprocally, pyochelin promoted growth and induced pyochelin gene expression in P. aeruginosa, but was not functional in P. fluorescens. The structure of the CHA0 siderophore was determined by mass spectrometry, thin-layer chromatography, NMR, polarimetry, and chiral HPLC as enantio-pyochelin, the optical antipode of the P. aeruginosa siderophore pyochelin. Enantio-pyochelin was chemically synthesized and confirmed to be active in CHA0. Its potential biosynthetic pathway in CHA0 is discussed.