972 resultados para Entry Mode
Resumo:
A diode-pumped passively Q-switched mode-locked (QML) Nd:GdVO4 laser with a low temperature GaAs (LT-GaAs) saturable absorber is presented. The maximal Q-switched mode-locked average output power was 798 mW with the Q-switched envelop having a repetition rate of 125 kHz. The mode-locked pulse trains inside the Q-switched pulse envelope had a repetition rate of similar to 750 MHz. The laser properties of the operational parameters on the pump power were also investigated experimentally.
Resumo:
Using classical constant-pressure molecular dynamics simulations and the force constants model, radial breathing mode (RBM) transition of single-wall carbon nanotubes under hydrostatic pressure is reported. With the pressure increased, the RBM shifts linearly toward higher frequency, and the RBM transition occurs at the same critical pressure as the structural transition. The group theory indicates that the RBMs are all Raman-active; however, due to the effect of the frequency transition and the electronic structure change for tube radial deformation, the Raman intensity of the modes becomes so weak as not to be experimentally detected, which is in agreement with a recent experiment by S. Lebedkin [Phys. Rev. B 73, 094109 (2006)]. Furthermore, the calculated RBM transition pressure is well fitted to the cube of diameter (similar to 1/d(3)).
Resumo:
By using a composite semiconductor absorber and an output coupler, we demonstrated a Q-switched and mode-locked diode-pumped microchip Nd:YVO4 laser. With a 350-mu m-thick crystal, the width of the Q-switched envelope was as short as 12 ns; the repetition rate of the mode-locked pulses inside the Q-switched pulse was more than 10 GHz. The average output power was 335 mW at a maximum pump power of 1.6 W. Q-switched envelope widths of 21 and 31 ns were also achieved with crystals 0.7 and 1.0 mm thick, respectively.
Resumo:
The mode edges of photonic crystal waveguide with triangular lattice based on a silicon-on-insulator slab are investigated by combination of the effective index method and two-dimensional plane wave expansion method. The variations of waveguide-mode edges with structure parameters of photonic crystal are deduced. When the ratio of the radius of air holes to the lattice constrant, r/Lambda, is fixed and the lattice constant of photonic crystal, Lambda, increases, the waveguide-mode edges shift to longer wavelengths. When Lambda is fixed and r/Lambda increases, the waveguide-mode edges shift to shorter wavelengths. Additionally, when r/Lambda and Lambda are both fixed, the radius of the two-row air holes adjacent to the waveguide increases, the waveguide-mode edges shift to shorter wavelengths.
Resumo:
The electron density response of a uniform two-dimensional (2D) electron gas is investigated in the presence of a perpendicular magnetic field and Rashba spin-orbit interaction (SOI). It is found that, within the Hartree-Fock approximation, a charge density excitation mode below the cyclotron resonance frequency shows a mode softening behavior, when the spin-orbit coupling strength falls into a certain interval. This mode softening indicates that the ground state of an interacting uniform 2D electron gas may be driven by the Rashba SOI to undergo a phase transition to a nonuniform charge density wave state.
Resumo:
Semiconductor saturable absorber mirrors (SESAMs) with GaAs/air interface relaxation region have less nonsaturable loss than those with low temperature grown In0.25Ga0.75As relaxation region. A thin layer Of SiO2 and a high reflectivity film Of Si/(SiO2/Si)(4) were coated on the SESAMs, respectively in order to improve the SESAM's threshold for damage. The passively continuous wave mode-locked lasers with two such SESAMs were demonstrated, and the SESAM with high reflectivity film of Si/(SiO2/Si)(4) is proved to be helpful for high output power. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
We have demonstrated a self-staring passively continuous-wave mode-locked diode end-pumped Nd:YLF laser with a semiconductor saturable absorber mirror of single-quantum-well (In0.25Ga0.75As) grown by metal-organic chemical-vapor deposition technique at low temperature. The saturable absorber was used as nonlinear absorber and output coupler simultaneously. Stable pulse duration of 3 ps has been achieved at the repetition rate of 98 MHz. The average output power was 530 mW at 1053 nm under the incident pump power of 10 W, corresponding to the peak power of 1.8 kW and pulse energy of 5.4 nJ.
Resumo:
The authors present the observation of wide transmission dips in a microring channel drop filter by two-dimensional finite-difference time-domain simulation. The authors show that distributed mode coupling between the input waveguide and the resonator results in the oscillations of the coupling efficiency and the envelope of transmission spectra with wavelength. The critical coupling as the light just passing through the coupling region is important for optimizing related devices. If the width of the input waveguide is different from that of the ring resonator, the phenomenon can be greatly reduced. (c) 2006 American Institute of Physics.
Resumo:
In this paper, we focus on the dipole mode of the two-dimensional (2D) photonic crystal (PC) single point defect cavity (SPDC) lasers and we report the fabrication and characterization of 2D PC SPDC lasers with the structure of adjusted innermost air holes. The photonic band and cavity Q factors are simulated by means of plane wave expansion (PWE) and finite-difference time-domain (FDTD), respectively. In order to improve the optical confinement of the SPDC, the diameter of the innermost holes was adjusted. Different lasing performances are observed experimentally. The experimental results agree with the theoretical prediction very well. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Mode characteristics of a strongly confined square cavity suspended in air via a pedestal on the substrate are investigated by a three-dimensional finite-difference time-domain technique. The mode wavelengths and mode quality factors (Q factors) are calculated as the functions of the size of the pedestal and the slope angle 0 of the sidewalls of the square slab, respectively For the square slab with side length of 2 mu m, thickness of 0.2 mu m, and refractive index of 3.4, on a square pedestal with refractive index of 3.17, the Q factor of the whispering-gallery (WG)-like mode transverse-electric TE(3.5)o first increases with the side length b of the square pedestal and then quickly decreases as b > 0.4 mu m, but the Q factor of the WG-like mode TE(4.6)o drops down quickly as b > 0.2 mu m, owing to their different symmetries. The results indicate that the pedestal can also result in mode selection in the WG-like modes. In addition, the numerical results show that the Q factors decrease 50% as the slope angle of the sidewalls varies from 90 degrees to 80 degrees. The mode characteristics of WG-like modes in the square cavity with a rectangular pedestal are also discussed. The results show that the nonsquare pedestal largely degrades the WG-like modes. (c) 2006 Optical Society of America
Resumo:
Owing to the considerable virtues of semiconductor lasers for applications, they have become the main optical source for fiber communication systems recently. The behavior of stochastic resonance (SR) in direct-modulated semiconductor laser systems is investigated in this article. Considering the carrier and photon noises and the cross-correlation between the two noises, the power spectrum of the photon density and the signal-to-noise ratio (SNR) of the modulated laser system were calculated using the linear approximation method. We found that the SR always appears in the dependence of the SNR upon the bias current density, and is strongly affected by the cross-correlation coefficient of the carrier and photon noises, the frequency of modulation signal and the photon lifetime in the laser cavity. Hence, it is promising to use the SR mechanism to enhance the SNR of direct-modulated semiconductor laser systems and improve the quality of optical communication. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The mode characteristics of a three-dimensional (3D) microdisk with a vertical refractive index distribution of n(2)/3.4/n(2) are investigated by the S-matrix method and 3D finite-difference time-domain (FDTD) technique. For the microdisk with a thickness of 0.2 mu m. and a radius of 1 mu m, the mode wavelengths and quality factors for the HE7,1 mode obtained by 3D FDTD simulation and the S-matrix method are in good agreement as n(2) increases from 1.0 to 2.6. But the Q factor obtained by the 3D FDTD rapidly decreases from 1.12 X 10(4) to 379 as n2 increases from 2.65 to 2.8 owing to the vertical radiation losses, which cannot be predicted by the proposed S-matrix method. The comparisons also show that quality factors obtained from the analytical solution of two-dimensional microdisks under the effective index approximation are five to seven times smaller than those of the 3D FDTD as n(2) = 1 and R = 1 mu m. (c) 2006 Optical Society of America.
Resumo:
Low temperature GaAs (LT-GaAs) was successfully grown at the temperature of 550 degrees C by metal organic vapor phase epitaxy on a semi-insular GaAs substrate. With such an absorber as well as an output coupler we obtain Q-switched mode-locked (QML) 1064 nm Nd:GdVO4 laser pumped by diode laser with high repetition rate, formed with a simple flat-flat cavity. The repetition rate of the Q-switched envelope increased from 100 to 660 kHz as the pump power increased from 2.28 to 7.29 W. The mode-locked pulses inside the Q-switched pulse envelope had a repetition rate of similar to 1.36 GHz. A maximum average output power of 953 mW was obtained. The dependence of the operational parameters on the pump power was also investigated experimentally. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
We have demonstrated an efficient and compact passively Q-switched and mode-locked (QML) 1064 nm Nd:YVO4 laser by using a low temperature grown GaAs (LT-GaAs) saturable absorber as well as an output coupler. Stable QML with envelope duration as short as 10 ns and Q-switched repetition rate of 36 kHz was obtained. It is the shortest envelope duration as far as we know, and it is so short that it can be used as Q-switching pulses directly. At 6.9 W of the incident pump power, average output power of 1.24 W was achieved and the corresponding peak power and energy of a single Q-switched pulse were 3.44 kW and 34.4 mu J, respectively. The mode-locked pulses inside the Q-switched pulse envelope had a repetition rate of 780 MHz. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Simultaneous Q-switching and mode-locking (QML) is accomplished in a diode-pumped Nd:YAG laser using low-temperature GaAs (LT-GaAs) as the saturable absorber, which also acts as an output coupler at the same time. The repetition rate of the Q-switched envelope increased from 25 to 40 kHz as the pump power increased from 2.2 to 6.9 W. The mode-locked pulses inside the Q-switched pulse envelope had a repetition rate of 714 MHz. A maximum average output power of 770 mW was obtained. (c) 2005 Elsevier GmbH. All rights reserved.