971 resultados para Darboux invariant


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sialostatin L (SialoL) is a secreted cysteine protease inhibitor identified in the salivary glands of the Lyme disease vector Ixodes scapularis. In this study, we reveal the mechanisms of SialoL immunomodulatory actions on the vertebrate host. LPS-induced maturation of dendritic cells from C57BL/6 mice was significantly reduced in the presence of SialoL. Although OVA degradation was not affected by the presence of SialoL in dendritic cell cultures, cathepsin S activity was partially inhibited, leading to an accumulation of a 10-kDa invariant chain intermediate in these cells. As a consequence, in vitro Ag-specific CD4(+) T cell proliferation was inhibited in a time-dependent manner by SialoL, and further studies engaging cathepsin S(-/-) or cathepsin L(-/-) dendritic cells confirmed that the immunomodulatory actions of SialoL are mediated by inhibition of cathepsin S. Moreover, mice treated with SialoL displayed decreased early T cell expansion and recall response upon antigenic stimulation. Finally, SialoL administration during the immunization phase of experimental autoimmune encephalomyelitis in mice significantly prevented disease symptoms, which was associated with impaired IFN-gamma and IL-17 production and specific T cell proliferation. These results illuminate the dual mechanism by which a human disease vector protein modulates vertebrate host immunity and reveals its potential in prevention of an autoimmune disease. The Journal of Immunology, 2009, 182: 7422-7429.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We provide bounds on the upper box-counting dimension of negatively invariant subsets of Banach spaces, a problem that is easily reduced to covering the image of the unit ball under a linear map by a collection of balls of smaller radius. As an application of the abstract theory we show that the global attractors of a very broad class of parabolic partial differential equations (semilinear equations in Banach spaces) are finite-dimensional. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we provide a complete algebraic invariant of link-homotopy, that is, an algebraic invariant that distinguishes two links if and only if they are link-homotopic. The paper establishes a connection between the ""peripheral structures"" approach to link-homotopy taken by Milnor, Levine and others, and the string link action approach taken by Habegger and Lin. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A theory of bifurcation equivalence for forced symmetry breaking bifurcation problems is developed. We classify (O(2), 1) problems of corank 2 of low codimension and discuss examples of bifurcation problems leading to such symmetry breaking.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let a > 0, Omega subset of R(N) be a bounded smooth domain and - A denotes the Laplace operator with Dirichlet boundary condition in L(2)(Omega). We study the damped wave problem {u(tt) + au(t) + Au - f(u), t > 0, u(0) = u(0) is an element of H(0)(1)(Omega), u(t)(0) = v(0) is an element of L(2)(Omega), where f : R -> R is a continuously differentiable function satisfying the growth condition vertical bar f(s) - f (t)vertical bar <= C vertical bar s - t vertical bar(1 + vertical bar s vertical bar(rho-1) + vertical bar t vertical bar(rho-1)), 1 < rho < (N - 2)/(N + 2), (N >= 3), and the dissipativeness condition limsup(vertical bar s vertical bar ->infinity) s/f(s) < lambda(1) with lambda(1) being the first eigenvalue of A. We construct the global weak solutions of this problem as the limits as eta -> 0(+) of the solutions of wave equations involving the strong damping term 2 eta A(1/2)u with eta > 0. We define a subclass LS subset of C ([0, infinity), L(2)(Omega) x H(-1)(Omega)) boolean AND L(infinity)([0, infinity), H(0)(1)(Omega) x L(2)(Omega)) of the `limit` solutions such that through each initial condition from H(0)(1)(Omega) x L(2)(Omega) passes at least one solution of the class LS. We show that the class LS has bounded dissipativeness property in H(0)(1)(Omega) x L(2)(Omega) and we construct a closed bounded invariant subset A of H(0)(1)(Omega) x L(2)(Omega), which is weakly compact in H(0)(1)(Omega) x L(2)(Omega) and compact in H({I})(s)(Omega) x H(s-1)(Omega), s is an element of [0, 1). Furthermore A attracts bounded subsets of H(0)(1)(Omega) x L(2)(Omega) in H({I})(s)(Omega) x H(s-1)(Omega), for each s is an element of [0, 1). For N = 3, 4, 5 we also prove a local uniqueness result for the case of smooth initial data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we prove an existence result for local and global isometric immersions of semi-Riemannian surfaces into the three dimensional Heisenberg group endowed with a homogeneous left-invariant Lorentzian metric. As a corollary, we prove a rigidity result for such immersions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we prove that gradient-like semigroups (in the sense of Carvalho and Langa (2009 J. Diff. Eqns 246 2646-68)) are gradient semigroups (possess a Lyapunov function). This is primarily done to provide conditions under which gradient semigroups, in a general metric space, are stable under perturbation exploiting the known fact (see Carvalho and Langa (2009 J. Diff. Eqns 246 2646-68)) that gradient-like semigroups are stable under perturbation. The results presented here were motivated by the work carried out in Conley (1978 Isolated Invariant Sets and the Morse Index (CBMS Regional Conference Series in Mathematics vol 38) (RI: American Mathematical Society Providence)) for groups in compact metric spaces (see also Rybakowski (1987 The Homotopy Index and Partial Differential Equations (Universitext) (Berlin: Springer)) for the Morse decomposition of an invariant set for a semigroup on a compact metric space).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present paper we obtain a new homological version of the implicit function theorem and some versions of the Darboux theorem. Such results are proved for continuous maps on topological manifolds. As a consequence. some versions of these classic theorems are proved when we consider differenciable (not necessarily C-1) maps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We generalize results in Cruz and de Rezende (1999) [7] by completely describing how the Beth numbers of the boundary of an orientable manifold vary after attaching a handle, when the homology coefficients are in Z, Q, R or Z/pZ with p prime. First we apply this result to the Conley index theory of Lyapunov graphs. Next we consider the Ogasa invariant associated with handle decompositions of manifolds. We make use of the above results in order to obtain upper bounds for the Ogasa invariant of product manifolds. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Hamiltonian system perturbed by two waves with particular wave numbers can present robust tori, which are barriers created by the vanishing of the perturbed Hamiltonian at some defined positions. When robust tori exist, any trajectory in phase space passing close to them is blocked by emergent invariant curves that prevent the chaotic transport. Our results indicate that the considered particular solution for the two waves Hamiltonian model shows plenty of robust tori blocking radial transport. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We explore a method for constructing two-dimensional area-preserving, integrable maps associated with Hamiltonian systems, with a given set of fixed points and given invariant curves. The method is used to find an integrable Poincare map for the field lines in a large aspect ratio tokamak with a poloidal single-null divertor. The divertor field is a superposition of a magnetohydrodynamic equilibrium with an arbitrarily chosen safety factor profile, with a wire carrying an electric current to create an X-point. This integrable map is perturbed by an impulsive perturbation that describes non-axisymmetric magnetic resonances at the plasma edge. The non-integrable perturbed map is applied to study the structure of the open field lines in the scrape-off layer, reproducing the main transport features obtained by integrating numerically the magnetic field line equations, such as the connection lengths and magnetic footprints on the divertor plate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show a scenario of a two-frequeney torus breakdown, in which a global bifurcation occurs due to the collision of a quasi-periodic torus T(2) with saddle points, creating a heteroclinic saddle connection. We analyze the geometry of this torus-saddle collision by showing the local dynamics and the invariant manifolds (global dynamics) of the saddle points. Moreover, we present detailed evidences of a heteroclinic saddle-focus orbit responsible for the type-if intermittency induced by this global bifurcation. We also characterize this transition to chaos by measuring the Lyapunov exponents and the scaling laws. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the transition to spatio-temporal chaos in spatially extended nonlinear dynamical systems possessing an invariant subspace with a low-dimensional attractor. When the latter is chaotic and the subspace is transversely stable we have a spatially homogeneous state only. The onset of spatio-temporal chaos, i.e. the excitation of spatially inhomogeneous modes, occur through the loss of transversal stability of some unstable periodic orbit embedded in the chaotic attractor lying in the invariant subspace. This is a bubbling transition, since there is a switching between spatially homogeneous and nonhomogeneous states with statistical properties of on-off intermittency. Hence the onset of spatio-temporal chaos depends critically both on the existence of a chaotic attractor in the invariant subspace and its being transversely stable or unstable. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a non-linear symplectic map that describes the alterations of the magnetic field lines inside the tokamak plasma due to the presence of a robust torus (RT) at the plasma edge. This RT prevents the magnetic field lines from reaching the tokamak wall and reduces, in its vicinity, the islands and invariant curve destruction due to resonant perturbations. The map describes the equilibrium magnetic field lines perturbed by resonances created by ergodic magnetic limiters (EMLs). We present the results obtained for twist and non-twist mappings derived for monotonic and non-monotonic plasma current density radial profiles, respectively. Our results indicate that the RT implementation would decrease the field line transport at the tokamak plasma edge. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a non-equilibrium three-state model whose dynamics is Markovian and displays the same symmetry as the three-state Potts model, i.e. the transition rates are invariant under the cyclic permutation of the states. Unlike the Potts model, detailed balance is, in general, not satisfied. The aging and the stationary properties of the model defined on a square lattice are obtained by means of large-scale Monte Carlo simulations. We show that the phase diagram presents a critical line, belonging to the three-state Potts universality class, that ends at a point whose universality class is that of the Voter model. Aging is considered on the critical line, at the Voter point and in the ferromagnetic phase.