Bubbling transition to spatial mode excitation in an extended dynamical system


Autoria(s): Szezech Junior, Jose Danilo; Lopes, Sergio Roberto; Viana, Ricardo Luiz; Caldas, Ibere Luiz
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2009

Resumo

We investigated the transition to spatio-temporal chaos in spatially extended nonlinear dynamical systems possessing an invariant subspace with a low-dimensional attractor. When the latter is chaotic and the subspace is transversely stable we have a spatially homogeneous state only. The onset of spatio-temporal chaos, i.e. the excitation of spatially inhomogeneous modes, occur through the loss of transversal stability of some unstable periodic orbit embedded in the chaotic attractor lying in the invariant subspace. This is a bubbling transition, since there is a switching between spatially homogeneous and nonhomogeneous states with statistical properties of on-off intermittency. Hence the onset of spatio-temporal chaos depends critically both on the existence of a chaotic attractor in the invariant subspace and its being transversely stable or unstable. (C) 2008 Elsevier B.V. All rights reserved.

CNPq

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

CAPES

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

FAPESP

Fundação Araucária

Fundacao Araucaria

Identificador

PHYSICA D-NONLINEAR PHENOMENA, v.238, n.5, p.516-525, 2009

0167-2789

http://producao.usp.br/handle/BDPI/29061

10.1016/j.physd.2008.11.015

http://dx.doi.org/10.1016/j.physd.2008.11.015

Idioma(s)

eng

Publicador

ELSEVIER SCIENCE BV

Relação

Physica D-nonlinear Phenomena

Direitos

restrictedAccess

Copyright ELSEVIER SCIENCE BV

Palavras-Chave #Spatio-temporal chaos #Transition to turbulence #Spatial mode excitation #Three-wave interaction #ON-OFF INTERMITTENCY #COUPLED MAP LATTICES #PERIODIC-ORBITS #CHAOTIC SYSTEMS #TURBULENCE #SYNCHRONIZATION #ATTRACTORS #PLASMA #FLUID #BIFURCATION #Mathematics, Applied #Physics, Multidisciplinary #Physics, Mathematical
Tipo

article

original article

publishedVersion