On the variations of the Betti numbers of regular levels of Morse flows


Autoria(s): BERTOLIM, M. A.; REZENDE, K. A. de; MANZOLI NETO, O.; VAGO, G. M.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2011

Resumo

We generalize results in Cruz and de Rezende (1999) [7] by completely describing how the Beth numbers of the boundary of an orientable manifold vary after attaching a handle, when the homology coefficients are in Z, Q, R or Z/pZ with p prime. First we apply this result to the Conley index theory of Lyapunov graphs. Next we consider the Ogasa invariant associated with handle decompositions of manifolds. We make use of the above results in order to obtain upper bounds for the Ogasa invariant of product manifolds. (C) 2011 Elsevier B.V. All rights reserved.

FAPESP[2009/05934-6]

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

FAPESP[07/06896-5]

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

FAPESP[08/57607-6]

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

CNPq[300929/2007-2]

French Brazilian Agreement

French Brazilian Agreement

Identificador

TOPOLOGY AND ITS APPLICATIONS, v.158, n.6, p.761-774, 2011

0166-8641

http://producao.usp.br/handle/BDPI/28881

10.1016/j.topol.2011.01.021

http://dx.doi.org/10.1016/j.topol.2011.01.021

Idioma(s)

eng

Publicador

ELSEVIER SCIENCE BV

Relação

Topology and Its Applications

Direitos

restrictedAccess

Copyright ELSEVIER SCIENCE BV

Palavras-Chave #Betti numbers #Handle decomposition #Conley index #Ogasa invariant #MANIFOLDS #Mathematics, Applied #Mathematics
Tipo

article

original article

publishedVersion