On the variations of the Betti numbers of regular levels of Morse flows
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2011
|
Resumo |
We generalize results in Cruz and de Rezende (1999) [7] by completely describing how the Beth numbers of the boundary of an orientable manifold vary after attaching a handle, when the homology coefficients are in Z, Q, R or Z/pZ with p prime. First we apply this result to the Conley index theory of Lyapunov graphs. Next we consider the Ogasa invariant associated with handle decompositions of manifolds. We make use of the above results in order to obtain upper bounds for the Ogasa invariant of product manifolds. (C) 2011 Elsevier B.V. All rights reserved. FAPESP[2009/05934-6] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) FAPESP[07/06896-5] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) FAPESP[08/57607-6] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) CNPq[300929/2007-2] French Brazilian Agreement French Brazilian Agreement |
Identificador |
TOPOLOGY AND ITS APPLICATIONS, v.158, n.6, p.761-774, 2011 0166-8641 http://producao.usp.br/handle/BDPI/28881 10.1016/j.topol.2011.01.021 |
Idioma(s) |
eng |
Publicador |
ELSEVIER SCIENCE BV |
Relação |
Topology and Its Applications |
Direitos |
restrictedAccess Copyright ELSEVIER SCIENCE BV |
Palavras-Chave | #Betti numbers #Handle decomposition #Conley index #Ogasa invariant #MANIFOLDS #Mathematics, Applied #Mathematics |
Tipo |
article original article publishedVersion |