998 resultados para 12. Investigación e innovación en Educación Matemática


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Se estudia el proceso de aprendizaje de los estudiantes de bachiller en materia de demostraciones matemáticas. Se describen criterios para determinar que una demostración matemática se han entendido. Entre ellos se encuentran entender el enunciado, entender los pasos de la demostración y comprender globalmente la solución como una respuesta universal al enunciado. Se estudia que tipos de demostraciones son aceptadas como tales por los alumnos. Se encuentran alumnos que admiten pruebas Empíricas, analíticas, deductivas, basadas en un sólo caso y también basadas en varios casos. Se tiene, por lo tanto, que existe una diveridad de tipos de pruebas y que la aceptación de unas y otras por parte de los alumnos no es excluyente. Se estudia la capacidad de los alumnos para discriminar demostraciones de otros enunciados matemáticos. De los resultados se deduce que la mayoría de los alumnos no son capaces de distinguir una demostración de un ejemplo concreto de una demostración real. Se estudia por último la manera en que la redacción de los enunciados afecta a la manera en que los alumnos lo entienden. Se concluye que un mismo enunciado puede ser interpretado de múltiples maneras cambiando la redacción del mismo o simplemente utilizando los elementos del lenguaje de la lógica que más ambiguos resulten en el lenguaje natural.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Se realiza un ensayo sobre la importancia de las hipótesis e ideas intuitivas en la enseñanza de las demostraciones. Se explica el proceso demostrativo como un proceso de conjetura-demostración-refutación. Se expresa que la primera parte es la más intuitiva y basada en lanzar hipótesis a la vista del problema. Se expone que la segunda y la tercera son las de mayor carga de abstracción requiriendo demostrar o refutar leyes matemáticas utilizando la lógica. Se indica que la enseñanza se centra mucho en la parte de demostración-refutación. Se propone centrarla más en la conjetura-demostración por ser mucho más cercana al estudiante ya que éste tiene mucha más facilidad para plantear hipótesis a la vista del problema aunque no sepa razonar con precisión el motivo por el cual la ley es válida. Se explica que de esta manera se puede salvar el abismo inicial entre las habilidades demostrativas del alumno y la dificultad de las demostraciones formales. Se entiende que con la práctica el alumno irá aumentando su capacidad para realizar las tareas deductivas más abstractas. Se comentan varios experimentos realizados sobre alumnos de secundaria que corroboran dichas conclusiones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Se debate sobre la mejor manera de enseñar la demostración matemática a los alumnos de secundaria. Se plantea que no todos los alumnos son capaces de realizar demostraciones puramente formales. Se expone el interés de dar libertad a los alumnos de realizar demostraciones de distinto tipo de acuerdo a su forma de razonar. Se explica en último término que si bien una combinación de razonamientos puede ser útil a lo largo del proceso demostrativo, la fase de demostración en el sentido más estricto sí que ha de basarse en deducciones puras. Se expone la dificultad de los alumnos para discriminar los razonamientos inductivos que no tienen validez como demostración y que sólo deben de usarse para encontrar las hipótesis a formular y los deductivos que son los realmente válidos como demostración.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Se exponen varios métodos para la enseñanza de geometría a estudiantes de Magisterio. El estudio se centra en la inscripción de poliedros regulares en otros poliedros regulares. Para ello se evalúa la enseñanza mediante varios métodos distintos. El primer método se denomina 'constuir o generar formas'. Consiste en modelar un poliedro regular con plastilina y posteriormente generar un segundo poliedro regular añadiendo plastilina al modelo original. El segundo método se llama 'formas rígidas que se deforman'. Consiste en hacer que los alumnos observen la manera en que algunos poliedros regulares pueden descomponerse en otros poliedros regulares. El tercer método se denomina 'Características de los poliedros regulares. Búsqueda de relaciones'. Dicho método se basa en la búsqueda de inscripciones de poliedros regulares basada en el recuento de vértices, aristas y caras. A partir de una tabla con dichos datos, se proponen hipótesis sobre qué poliedros se pueden inscribir en otros poliedros.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Se estudian los conceptos de estudiantes de secundaria sobre la inferencia estadística. Se propone una serie de cuestiones a alumnos de tercer curso de E.S.O. y de C.O.U. Se parte del supuesto de que los alumnos de E.S.O. no tienen conocimientos previos de inferencia estadística y los de C.O.U. sí. La cuestiones realizadas a los alumnos son de tipo cualitativo. Ejemplos de las preguntas realizadas podrían ser '¿Podemos inferir la proporción de cartas rojas de una baraja basándonos en la proporción de color en 20 de sus cartas?' ó 'Si queremos averiguar cuántas bolas de una bolsa (que contiene 100 bolas) son rojas y cuántas verdes, y sacamos 25 bolas de la bolsa, indica cuál es la muestra sobre la que estamos trabajando y cuál el conjunto de objetos'. Tras el estudio, se observa que los estudiantes cometen errores importantes al identificar los elementos de la inferencia estadística. Dicha observación se considera provisional en espera de un estudio más profundo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Se estudia la manera en que un grupo de alumnos de Licentura de Matemáticas resuelven problemas. El estudio se centra en problemas de combinatoria. Se analiza los métodos usados para la resolución y se clasifican como ostensivos, extensivos, actuativos, intensivos, validativos o una mezcla de los anteriores. A lo largo del documento se detallan las respuestas dadas por cuatro de los alumnos a algunas de las cuestiones planteadas. Para finalizar, se analiza cuáles de esas respuestas se corresponden con cada una de las formas de resolución y la relación entre los métodos de resolución utilizados y la proporción de problemas bien resueltos en cada uno de los casos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Se resume un debate sobre la enseñanza del concepto de proporción en primaria. Se expone que los escolares de primer ciclo son demasiado jóvenes para la resolución correcta de problemas de razón y proporción. Se exponen también varias formas de enseñar el concepto de proporción a través de ejemplos concretos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Se presenta un método de investigación sobre métodos de enseñanza. Se expone la puesta en práctica de dicho sistema de investigación sobre varios métodos de enseñanza de problemas aditivos. El método de investigación consiste en la división de los alumnos en grupos. A dichos grupos se les asignan distintos métodos de enseñanza. Los métodos de enseñanza estudiados en el ejemplo se denominan 'método redactar' y 'método resolver'. El 'método redactar' consiste en dejar en manos de los alumnos la redacción de los problemas. Una vez redactados, los escolares han de resolver los problemas redactados por sus compañeros. El 'método resolver' se basa en la resolución por parte de los alumnos de una serie de problemas. Dichos problemas están ordenados de manera ascendente según su dificultad. Por ultimo, se contrasta el aprendizaje de ambos grupos con el de los escolares que siguen el currículo normal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Se resume un debate sobre los métodos de investigación en didáctica de las matemáticas. A dicho debate asisten algunos ponentes asistentes al simposio de la Sociedad Española de Investigación en Educación Matemática (SEIEM) así como varios invitados de la Sociedad de Educación en Matemáticas de la Sociedad portuguesa de las ciencias de la Educación. El seminario se divide en dos partes. En la primera se presentan algunas de las ponencias ya realizadas durante el simposio de la SEIEM. En la segunda parte se debate sobre el contenido de las mismas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Se resume una serie de exposiciones/debate en las que los asistentes al 'VI Simposio de la Sociedad Española de Investigación en Educación Matemática' explican las investigaciones en las que trabajan. Tras las exposiciones, se realiza un pequeño debate en el que los asistentes aclaran sus dudas sobre las investigaciones. Los trabajos expuestos son 'Nociones sociales recontextualizadas en Educación Matemática : el caso de la competencia comunicativa', 'Comunidad virtual de discurso profesional geométrico: contribuciones de un proceso interactivo docente por Internet', 'Organización Matemática en torno a las técnicas de derivación de la Enseñanza Secundaria', 'Los mapas conceptuales en Educación Matemática : antecedentes y estado actual de la investigación'.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Se resumen las reuniones realizadas por el grupo de didáctica de la matemática como disciplina científica. El trabajo del grupo transcurre a lo largo de dos sesiones. En la primera se presenta el trabajo 'Presentación de contenidos matemáticos mediante una estructura genérica y modular. Experiencia en el marco de la formación del profesorado'. Dicho trabajo propone una forma de estructurar la enseñanza basado en módulos independientes que se agrupan para formar contenidos adaptables a cada alumno. Queda fuera de la sesión, por indisposición de la ponente, la exposión del trabajo 'El proceso de algebrización de Organizaciones Matemáticas Escolares'. Durante la segunda sesión se exponen los trabajos 'Dos experiencias renovadoras en la enseñanza de la aritmética : Pestalozzi y la enseñanza mutua' y 'Presentación de un software de tratamiento gráfico de datos a través de su clasificación'. El primero trata sobre las distintas maneras de enseñar las matemáticas en el primer cuarto del siglo XIX. El segundo trabajo trata sobre un software para la enseñanza de las matemáticas basado en las representaciones visuales de los elementos. La exposición de todos los trabajos es seguida de sus correspondientes debates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Se describen los trabajos realizados, para la titulación de Matemáticas, dentro de los proyectos 'Tuning Educational Estructures in Europe' y 'Proyecto-Piloto CRUE'. CRUE son las siglas de Conferencia de Rectores de las Universidades Españolas. Asimismo se analiza el nuevo marco normativo que conducirá a la integración del sistema universitario español en el Espacio Europeo de la Educación Superior y la futura elaboración del Libro Blanco para la titulación de Matemáticas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerosos trabajos se han destinado a la elaboración de estrategias didácticas como una forma de enseñanza que favorece la dirección del proceso de aprendizaje de los estudiantes y que reporta mejoras en la enseñanza de cualquier materia. Como una de las dificultades en el aprendizaje de la geometría en la formación del profesorado de matemáticas en el currículo cubano se encuentra la realización de demostraciones geométricas, por lo que se hace necesario buscar herramientas metodológicas que conduzcan a ideas novedosas en su enseñanza. Se presentan los resultados de la aplicación de una estrategia didáctica para la aenseñanza de las demostraciones geométricas en el estudio de la Esteriometría.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Se aportan aspectos parciales de una investigación encaminada a describir la evolución de las concepciones y creencias de los futuros profesores de matemáticas de secundaria al cursar una asignatura de Didáctica de la Matemática. Dicha investigación explora las concepciones y creencias de los estudiantes para profesor mediante un cuestionario abierto que se aplica al inicio y al final de la asignatura. A través de un análisis de contenido se clasifican las respuestas para interpretar la evolución de los sujetos en función de la cantidad y calidad de las respuestas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Se presenta una aproximación a las concepciones y creencias de los profesores universitarios de matemáticas acerca de la enseñanza de las ecuaciones diferenciales en estudios científico-experimentales. El estudio tiene dos partes, una general que enumera las características más destacadas de la enseñanza de las ecuaciones diferenciales en ciclo inicial de universidad y que explica la persistencia de la utilización de métodos tradicionales de enseñanza. La segunda parte, que caracteriza a cada profesor en términos de diferencias y similitudes entre las concepciones y creencias específicas, y del nivel de coherencia demostrado. A partir de esta caracterización final se establecen tres grupos de profesores denominados I, II y III.