995 resultados para Self-assembled thin films


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Morphology of self-assembled GeSi quantum dot grown on Si(113) by Si molecular beam epitaxy has been studied by transmission electron microscopy and atomic force microscopy. Photoluminescence from the as-grown sample and annealed sample was studied. The results were analyzed and explained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The annealing behavior of the hexagonal phase content in cubic GaN (c-GaN) thin films grown on GaAs (001) by MOCVD is reported. C-GaN thin films are grown on GaAs (001) substrates by metalorganic chemical vapor deposition (MOCVD). High temperature annealing is employed to treat the as-grown c-GaN thin films. The characterization of the c-GaN films is investigated by photoluminescence (PL) and Raman scattering spectroscopy. The change conditions of the hexagonal phase content in the metastable c-GaN are reported. There is a boundary layer existing in the c-GaN/GaAs film. When being annealed at high temperature, the intensity of the TOB and LOB phonon modes from the boundary layer weakens while that of the E-2 phonon mode from the hexagonal phase increases. The content change of hexagonal phase has closer relationship with annealing temperature than with annealing time period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

InAs and In0.9Al0.1As self-assembled quantum dots have been grown by Stranski-Krastanow growth mode on In0.52Al0.48As lattice-matched on (0 0 1)InP substrates by MBE. The ternary In0.9Al0.1As dots on InP was demonstrated for the first time. The structural and optical properties were characterized using TEM and PL, respectively. Experimental results show that, a larger critical thickness is required for In0.9Al0.1As dots formation than for InAs dots, the In0.9Al0.1As dots show larger sizes and less homogeneity; some ordering in alignment can be observed in both InAs and In0.9Al0.1As dots, and In0.9Al0.1As dots give narrower luminescence than InAs dots. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Red-emitting at about 640 nm from self-assembled In0.55Al0.45As/Al0.5Ga0.5As quantum dots grown on GaAs substrate by molecular beam epitaxy are demonstrated, A double-peak structure of photoluminescence (PL) spectra from quantum dots was observed, and a bimodal distribution of dot sizes was also confirmed by an atomic force micrograph (AFM) image for uncapped sample. From the temperature and excitation intensity dependence of PL spectra, it is found that the double-peak structure of PL spectra from quantum dots is strongly correlated to the two predominant quantum dot families. Taking into account the quantum-size effect on the peak energy, it is proposed that the high (low) energy peak results from a smaller (larger) dot family, and this result is identical to the statistical distribution of dot lateral size from the AFM image.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Red-emission at similar to 640 nm from self-assembled In0.55Al0.45As/Al0.5Ga0.5As quantum dots grown on GaAs substrate by molecular beam epitaxy (MBE) has been demonstrated. We obtained a double-peak structure of photoluminescence (PL) spectra from quantum dots. An atomic force micrograph (AFM) image for uncapped sample also shows a bimodal distribution of dot sizes. From the temperature and excitation intensity dependence of PL spectra, we found that the double-peak structure of PL spectra from quantum dots was strongly correlated to the two predominant quantum dot families. Taking into account quantum-size effect on the peak energy, we propose that the high (low) energy peak results from a smaller (larger) dot family, and this result is identical with the statistical distribution of dot lateral size from the AFM image.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photoluminescence spectroscopy has been used to investigate self-assembled InAs islands in InAlAs grown on InP(0 0 1) by molecular beam epitaxy, in correlation with transmission electron microscopy. The nominal deposition of 3.6 monolayers of InAs at 470 degrees C achieves the onset stage of coherent island formation. In addition to one strong emission around 0.74 eV, the sample displaces several emission peaks at 0.87, 0.92. 0.98, and 1.04 eV. Fully developed islands that coexist with semi-finished disk islands account for the multipeak emission. These results provide strong evidence of size quantization effects in InAs islands. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular beam epitaxy has been used for growing InGaAs self-assembled quantum dots (QDs) in InAlAs on an InP(001) substrate. Nominal deposition of 9.6 monolayers of In0.9Ga0.1As results in QDs of similar to 6.5 nm high with an areal density of 3.3 X 10(11) cm(-2). Conspicuous bimodal size distribution is identified, and is responsible for the observed QDs photoluminescence (PL) emission with two peaks at 0.627 and 0.657 eV. Good agreement is achieved between the observed PL peak energies and calculated results. (C) 1999 American Institute of Physics. [S00218979(99)00101-2].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic structure of an InAs self-assembled quantum dot in the presence of a perpendicular magnetic field is investigated theoretically. The effect of finite offset, valence-band mixing, and strain are taken into account. The hole levels show strong anticrossings. The large strain and strong magnetic field decrease the effect of mixing between heavy hole and light hole. The hole energy levels have in general a weaker field dependence compared with the corresponding uncoupled levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of growth interruption on the InAs deposition and its subsequent growth as self-assembled island structures, in particular the material transport process of the InAs layers has been investigated by photoluminescence and transmission electron microscopy measurements. InAs material in structures with only coherent islands transfers from the wetting layer to the formed islands and the growth interruption causes a red shift of PL peak energy. On the other hand, the PL peak shifts to higher energy in structures containing simultaneously coherent and noncoherent islands with dislocations. In this case, the noncoherent islands capture InAs material from the surrounding wetting layer as well as coherent islands, which casues a reduction in the size of these islands. The variations in the PL intensity and line width are also discussed. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-quality InAs epitaxial layers have been grown on (1 0 0) oriented semi-insulating GaAs substrates by MBE. The transport properties of largely lattice mismatched InAs/GaAs heterojunctions have been investigated by Hall effect measurements down to 10 K. In spite of a high dislocation density at the heterointerface, very high electron mobilities are obtained in the InAs thin films. By doping Si into the layer far from the InAs/GaAs interface, we found that the doped samples have higher electron mobility than that of the undoped samples with the same thickness. The mobility demonstrates a pronounced minimum around 300 K for the undoped sample. But for Si-doped samples, no pronounced minimum has been found. Such abnormal behaviours are explained by the parallel conduction from the quasi-bulk carriers and interface carriers. These high-mobility InAs thin films are found to be suitable materials for making Hall elements. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introducing the growth interruption between the InAs deposition and subsequent GaAs growth in self-assembled quantum dot (QD) structures, the material transport process in the InAs layers has been investigated by photoluminescence and transmission electron microscopy measurement. InAs material in structures without misfit dislocations transfers from the wetting layer to QDs corresponding to the red-shift of PL peak energy due to interruption. On the other hand, the PL peak shifts to higher energy in the structures with dislocations. In this case, the misfit dislocations would capture the InAs material from the surrounding wetting layer and coherent islands leading to the reduction of the size of these QDs. The variations in the PL intensity and Linewidth are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of interdot electronic coupling on photoluminescence (PL) spectra of self-assembled InAs/GaAs quantum dots (QDs) has been systematically investigated combining with the measurement of transmission electron microscopy. The experimentally observed fast red-shift of PL energy and an anomalous reduction of the linewidth with increasing temperature indicate that the QD ensemble can be regarded as a coupled system. The study of multilayer vertically coupled QD structures shows that a red-shift of PL peak energy and a reduction of PL linewidth are expected as the number of QD layers is increased. On the other hand, two layer QDs with different sizes have been grown according to the mechanism of a vertically correlated arrangement. However, only one PL peak related to the large QD ensemble has been observed due to the strong coupling in InAs pairs. A new possible mechanism to reduce the PL linewidth of QD ensemble is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel process of room temperature ion beam sputtering deposition of vanadium oxide films and low temperature post annealing for uncooled infrared detectors was proposed in this work. VOx thin films with relatively low square resistance (70 K Omega / square) and large temperature coefficient of resistance (more than 3%/K) at room temperature were fabricated using this low temperature process which was very compatible with the process of uncooled infrared detectors based on micromachined technology. Furthermore, chemical composition and film surface have been characterized using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) respectively. The results showed that the main composition of the processed thin films was V2O5 and the thin films were in the process of crystallization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bulge test combined with a refined load-deflection model for long rectangular membrane was applied to determine the mechanical and fracture properties of PECVD silicon nitride (SiNx) thin films. Plane-strain modulus E-ps prestress s(0), and fracture strength s(max) of SiNx thin films deposited both on bare Si substrate and on SiO2-topped Si substrate were extracted. The SiNx thin films on different substrates possess similar values of E-ps and s(0) but quite different values of s(max). The statistical analysis of fracture strengths were performed by Weibull distribution function and the fracture origins were further predicted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanical properties and fracture behavior of silicon carbide (3C-SiC) thin films grown on silicon substrates were characterized using bulge testing combined with a refined load-deflection model for long rectangular membranes. Plane-strain modulus E-ps, prestress so, and fracture strength s(max) for 3C-SiC thin films with thickness of 0.40 mu m and 1.42 mu m were extracted. The E, values of SiC are strongly dependent on grain orientation. The thicker SIC film presents lower so than the thinner film due to stress relaxation. The s(max) values decrease with increasing film thickness. The statistical analysis of the fracture strength data were achieved by Weibull distribution function and the fracture origins were predicted.