955 resultados para Saturated fatty acids


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Monounsaturated fatty acids (MUFA)-rich and n-6 polyunsaturated fatty acid (n-6 PUFA)-rich vegetable oils are increasingly used as fish oil replacers for aquafeed formulation. The present study investigated the fatty acid metabolism in juvenile European sea bass (Dicentrarchus labrax, 38.4 g) fed diets containing fish oil (FO, as the control treatment) or two different vegetable oils (the MUFA-rich canola/rapeseed oil, CO, and the n-6 PUFA-rich cottonseed oil, CSO) tested individually or as a 50/50 blend (CO/CSO). The whole-body fatty acid balance method was used to deduce the apparent in vivo fatty acid metabolism. No effect on growth performance and feed utilization was recorded. However, it should be noted that the fish meal content of the experimental diets was relatively high, and thus the requirement for n-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA) may have likely been fulfilled even if dietary fish oil was fully replaced by vegetable oils. Overall, relatively little apparent in vivo fatty acid bioconversion was recorded, whilst the apparent in vivo ?-oxidation of dietary fatty acid was largely affected by the dietary lipid source, with higher rate of ?-oxidation for those fatty acids which were provided in dietary surplus. The deposition of 20:5n-3 and 22:6n-3, as % of the dietary intake, was greatest for the fish fed on the CSO diet. It has been shown that European sea bass seems to be able to efficiently use n-6 PUFA for energy substrate, and this may help in minimizing the ?-oxidation of the health benefiting n-3 LC-PUFA and thus increase their deposition into fish tissues.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Using lipidomic methodologies the impact that meal lipid composition and metabolic syndrome (MetS) exerts on the postprandial chylomicron triacylglycerol (TAG) response was examined. Males (9 control; 11 MetS) participated in a randomised crossover trial ingesting two high fat breakfast meals composed of either dairy-based foods or vegetable oil-based foods. The postprandial lipidomic molecular composition of the TAG in the chylomicron-rich (CM) fraction was analysed with tandem mass spectrometry coupled with liquid chromatography to profile CM TAG species and targeted TAG regioisomers. Postprandial CM TAG concentrations were significantly lower after the dairy-based foods compared with the vegetable oil-based foods for both control and MetS subjects. The CM TAG response to the ingested meals involved both significant and differential depletion of TAG species containing shorter-and medium-chain fatty acids (FA) and enrichment of TAG molecular species containing C16 and C18 saturated, monounsaturated and diunsaturated FA. Furthermore, there were significant changes in the TAG species between the food TAG and CM TAG and between the 3- and 5-h postprandial samples for the CM TAG regioisomers. Unexpectedly, the postprandial CM TAG concentration and CM TAG lipidomic responses did not differ between the control and MetS subjects. Lipidomic analysing of CM TAG molecular species revealed dynamic changes in the molecular species of CM TAG during the postprandial phase suggesting either preferential CM TAG species formation and/or clearance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Oral chemoreception of fatty acids and the association with diet and fatty food preferences may enable the identification of mechanisms involved with the development of obesity and why dietary changes may be difficult for many individuals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lisa investigated the taste of fat and its influence on excess fat consumption and obesity. This research established that taste sensitivity to fat can be modulated by fat intake and may be used as an obesity prevention tool in the future.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fatty acid translocase (FAT/CD36) is a transport protein with a high affinity for long-chain fatty acids (LCFA). It was recently identified on rat skeletal muscle mitochondrial membranes and found to be required for palmitate uptake and oxidation. Our aim was to identify the presence and elucidate the role of FAT/CD36 on human skeletal muscle mitochondrial membranes. We demonstrate that FAT/CD36 is present in highly purified human skeletal mitochondria. Blocking of human muscle mitochondrial FAT/CD36 with the specific inhibitor sulfo-N-succimidyl-oleate (SSO) decreased palmitate oxidation in a dose-dependent manner. At maximal SSO concentrations (200 μM) palmitate oxidation was decreased by 95% (P < 0.01), suggesting an important role for FAT/CD36 in LCFA transport across the mitochondrial membranes. SSO treatment of mitochondria did not affect mitochondrial octanoate oxidation and had no effect on maximal and submaximal carnitine palmitoyltransferase I (CPT I) activity. However, SSO treatment did inhibit palmitoylcarnitine oxidation by 92% (P < 0.001), suggesting that FAT/CD36 may be playing a role downstream of CPT I activity, possibly in the transfer of palmitoylcarnitine from CPT I to carnitine-acylcarnitine translocase. These data provide new insight regarding human skeletal muscle mitochondrial fatty acid (FA) transport, and suggest that FAT/CD36 could be involved in the cellular and mitochondrial adaptations resulting in improved and/or impaired states of FA oxidation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A rapid analytical approach for discrimination and quantitative determination of polyunsaturated fatty acid (PUFA) contents, particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in a range of oils extracted from marine resources has been developed by using attenuated total reflection Fourier transform infrared spectroscopy and multivariate data analysis. The spectral data were collected without any sample preparation; thus, no chemical preparation was involved, but data were rather processed directly using the developed spectral analysis platform, making it fast, very cost effective, and suitable for routine use in various biotechnological and food research and related industries. Unsupervised pattern recognition techniques, including principal component analysis and unsupervised hierarchical cluster analysis, discriminated the marine oils into groups by correlating similarities and differences in their fatty acid (FA) compositions that corresponded well to the FA profiles obtained from traditional lipid analysis based on gas chromatography (GC). Furthermore, quantitative determination of unsaturated fatty acids, PUFAs, EPA and DHA, by partial least square regression analysis through which calibration models were optimized specifically for each targeted FA, was performed in both known marine oils and totally independent unknown n - 3 oil samples obtained from an actual commercial product in order to provide prospective testing of the developed models towards actual applications. The resultant predicted FAs were achieved at a good accuracy compared to their reference GC values as evidenced through (1) low root mean square error of prediction, (2) good coefficient of determination close to 1 (i.e., R 2≥ 0.96), and (3) the residual predictive deviation values that indicated the predictive power at good and higher levels for all the target FAs. © 2014 Springer Science+Business Media New York.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Macrophage apoptosis, a key process in atherogenesis, is regulated by oxidation products, including hydroxyoctadecadienoic acids (HODEs). These stable oxidation products of linoleic acid (LA) are abundant in atherosclerotic plaque and activate PPARγ and GPR132. We investigated the mechanisms through which HODEs regulate apoptosis. The effect of HODEs on THP-1 monocytes and adherent THP-1 cells were compared with other C18 fatty acids, LA and α-linolenic acid (ALA). The number of cells was reduced within 24 hours following treatment with 9-HODE (p < 0.01, 30 μM) and 13 HODE (p < 0.01, 30 μM), and the equivalent cell viability was also decreased (p < 0.001). Both 9-HODE and 13-HODE (but not LA or ALA) markedly increased caspase-3/7 activity (p < 0.001) in both monocytes and adherent THP-1 cells, with 9-HODE the more potent. In addition, 9-HODE and 13-HODE both increased Annexin-V labelling of cells (p < 0.001). There was no effect of LA, ALA, or the PPARγ agonist rosiglitazone (1μM), but the effect of HODEs was replicated with apoptosis-inducer camptothecin (10μM). Only 9-HODE increased DNA fragmentation. The pro-apoptotic effect of HODEs was blocked by the caspase inhibitor DEVD-CHO. The PPARγ antagonist T0070907 further increased apoptosis, suggestive of the PPARγ-regulated apoptotic effects induced by 9-HODE. The use of siRNA for GPR132 showed no evidence that the effect of HODEs was mediated through this receptor. 9-HODE and 13-HODE are potent—and specific—regulators of apoptosis in THP-1 cells. Their action is PPARγ-dependent and independent of GPR132. Further studies to identify the signalling pathways through which HODEs increase apoptosis in macrophages may reveal novel therapeutic targets for atherosclerosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Autism Spectrum Disorder (ASD) has been associated with essential fatty acid (EFA) deficiencies, with some researchers theorising that dysregulation of phospholipid metabolism may form part of the biological basis for ASD. This pilot study compared observable signs of fatty acid status of 19 children with an ASD diagnosis to 23 of their typically developing siblings. A pregnancy, birth and breastfeeding history was also obtained from their parents, which included a measure of infant intake of fatty acid rich colostrum immediately post-partum. When considered within their family group, those infants not breastfed (with colostrum) within the first hour of life and who had a history of fatty acid deficiency symptoms were more likely to have an ASD diagnosis. Other variables such as formula use, duration of breastfeeding, gestational age and Apgar scores were not associated with group membership. The results of this study are consistent with previous research showing a relationship between fatty acid metabolism, breastfeeding and ASD such that early infant feeding practices and the influence this has on the fatty acid metabolism of the child may be a risk factor for ASD.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dietary deficiency of ω3 fatty acid during development leads to impaired cognitive function. However, the effects of multiple generations of ω3 fatty-acid deficiency on cognitive impairment remain unclear. In addition, we sought to test the hypothesis that the cognitive impairments of ω3 fatty-acid-deficient mice are mediated through the arachidonic acid-cyclooxygenase (COX) pathway. To address these issues, C57BL/6J mice were bred for 3 generations and fed diets either deficient (DEF) or sufficient (SUF) in ω3 fatty acids. At postnatal day 21, the F3 offspring remained on the dam's diet or were switched to the opposite diet, creating 4 groups. In addition, 2 groups that remained on the dam's diet were treated with a COX inhibitor. At 19 wk of age, spatial-recognition memory was tested on a Y-maze. Results showed that 16 wk of SUF diet reversed the cognitive impairment of F3 DEF mice. However, 16 wk of ω3 fatty-acid-deficient diet impaired the cognitive performance of the F3 SUF mice, which did not differ from that of the F3 DEF mice. These findings suggest that the cognitive deficits after multigenerational maintenance on ω3 fatty-acid-deficient diet are not any greater than are those after deficiency during a single generation. In addition, treatment with a COX inhibitor prevented spatial-recognition deficits in F3 DEF mice. Therefore, cognitive impairment due to dietary ω3 fatty-acid deficiency appears to be mediated by the arachidonic acid-COX pathway and can be prevented by 16 wk of dietary repletion with ω3 fatty acids or COX inhibition.