1000 resultados para Ensino de matemática. História da matemática. Atividades didáticas. Lagrange. Escola Normal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper is a follow up of the study of the evolution of the public policies for education, especially in the areas of improvement in the science and mathematics program, whose main purpose is to qualify teachers is these disciplines. The evaluation of strategies adopted by the Department of education for the implementation and development of the program in the states, which, on a decentralized bases and through its administrative structure is responsible for contracting higher Education Institutions in charge of preparatory courses. It discusses the enforcement of such a strategy and analyses the combined efforts between the federal sphere, represented by the coordination of preparatory courses for Higher Education Personnel (CAPES) and the Departments of Education, Science and Technology of the states, Research Spowsoring Foundations and the Federal Universities, breaking with some governmental traditions. It analyses the greater degree of interaction between the curriculum for public schools and the developments achieved in the many fields of knowledge. It is based on parameters in the proposals disposed by the law of the methods and fundamentals education, methods of curriculum, and national teaching standards, as well as studies carried out in the states that demand the biggest quantity of qualifying projects, trough analyses that are focused on the problems regarding science teaching in the Brazil and the format adopted in the implementation of the program.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta tese analisa os efeitos na aprendizagem, a partir de uma proposta pedagógica que integra uma metodologia de intervenção apoiada por recursos tecnológicos. A proposta pedagógica é implementada em ambiente virtual de aprendizagem e se destina à realização de estudos complementares, para alunos reprovados em disciplinas iniciais de matemática em cursos de graduação. A metodologia de intervenção é inspirada no método clínico de Jean Piaget e visa identificar noções já construídas, propor desafios, possibilitar a exploração dos significados e incentivar a argumentação lógica dos estudantes. O ambiente de interação é constituído por ferramentas tecnológicas capazes de sustentar interações escritas, numéricas, algébricas e geométricas. A Teoria da Equilibração de Piaget possibilita a análise de ações e reflexões dos estudantes diante dos desafios propostos. São identificados desequilíbrios cognitivos e processos de reequilibração advindos das interações com os objetos matemáticos. A transformação de um saber-fazer para um saber-explicar é considerada indicativo de aprendizagem das noções pesquisadas e decorre de um desenvolvimento das estruturas de pensamento. Além da análise de processos de reequilibração cognitiva, analisou-se o aproveitamento dos estudantes, considerando os graus de aprendizagem definidos nos critérios de certificação dos desempenhos. Os resultados indicam que as interações promovidas com a estratégia pedagógica proposta colaboraram para a aprendizagem de noções e conceitos matemáticos envolvidos nas atividades de estudo. A análise do processo de equilibração permite identificar a aprendizagem como decorrência do desenvolvimento de estruturas cognitivas. O movimento das aprendizagens revelou processos progressivos de aquisição de sentido dos objetos matemáticos, com graus que expressaram condutas de regulação. Estas permitiram ultrapassar um fazer instrumental, por aplicação de fórmulas ou regras, e avançar por um fazer reflexivo sobre os significados dos conceitos envolvidos. A pesquisa sugere a implementação da proposta como estratégia pedagógica na proposição de ambientes de aprendizagem para a educação matemática a distância e como apoio ao ambiente presencial.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este estudo trata das dificuldades que os professores de matemática encontram na sua prática diária de sala de aula, dificuldades estas que sempre existiram e parecem persistir apesar das tentativas de solucioná-las. O trabalho desenvolveu-se através de entrevistas, ob servações de aulas e reuniões de área. Os maiores problemas apontados foram: formação do professor, conteúdo programático, aprendizagem, avaliação e dificuldades dos alunos. Cada um destes itens foi aprofundado sempre que necessario. Procurou-se esclarecer todos e com isto encontrar caminhos. Após caracterizá-los, passou-se às dificuldades dos alunos; são enfocadas apenas as mais significativas, segundo os professores. Foi aplicado um teste onde muitas delas se confirmaram. Concluiu-se que a prática da matemática em nossas escolas continua ineficiente. O seu ensino não acompanha as necessidades da sociedade, os professores tendem a abandonar a profissão por causa dos baixos salários, os alunos são reprovados em massa e abandonam seus estudos, os livros apenas acrescentam ou retiram conteúdos, as escolas continuam formando alunos passivos e pouco criticos em relação à matemáti ca. Muitas tentativas ainda serão feitas mas nao se pode contar com a certeza do retorno porque o professor não é valorizado e nem ouvido quando se trata de apresentar propostas. Os poucos resultados positivos observados partiram deles que sempre procuram soluções práticas e não dispendiosas para resolver seus problemas. Finalizando o trabalho foram apresentadas sugestões dos professores e se acredita que muitas produzem resultado positivo em pouco tempo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta tese tem o objetivo de mostrar que o sujeito aprendente, ao se deparar com um conceito matemático já construído por ele, pode, em outro contexto, atribuir-lhe novos sentidos e re-significá-lo. Para tanto, a investigação se apóia em duas teorias filosóficas: a filosofia de Immanuel Kant e a filosofia de Ludwig Wittgenstein. Também buscamos subsídios teóricos em autores contemporâneos da filosofia da matemática, tais como Gilles-Gaston Granger, Frank Pierobon, Maurice Caveing e Marco Panza. No decorrer do processo da aprendizagem, o conceito matemático está sempre em estado de devir, na perspectiva do aluno, mesmo que este conceito seja considerado imutável sob o ponto de vista da lógica e do rigor da Matemática. Ao conectar o conceito com outros conceitos, o sujeito passa a reinterpretá-lo e, a partir desta outra compreensão, ele o reconstrói. Ao atribuir sentidos em cada ato de interpretação, o conceito do objeto se modifica conforme o contexto. As estruturas sintáticas semelhantes, em que figura o objeto, e as aparências semânticas provenientes da polissemia da linguagem oferecem material para as analogias entre os conceitos. As conjeturas nascidas destas analogias têm origem nas representações do objeto percebido, nas quais estão de acordo com a memória e a imaginação do sujeito aprendente. A imaginação é a fonte de criação e sofre as interferências das ilusões provenientes do ato de ver, já que o campo de visão do aluno está atrelado ao contexto no qual se encontra o objeto. A memória, associada às experiências vividas com o objeto matemático e à imaginação, oferece condições para a re-significação do conceito. O conceito antes de ser interpretado pelo aluno obedece às exigências e à lógica da matemática, após a interpretação depende da própria lógica do aluno. A modificação do conceito surge no momento em que o sujeito, ao interpretar a regra matemática, estabelece novas regras forjadas durante o processo de sua aplicação. Na contingência, o aluno projeta sentidos aos objetos matemáticos (que têm um automovimento previsto), porém a sua imaginação inventiva é imprevisível. Nestas circunstâncias, o conceito passa a ser reconstruível a cada ato de interpretação. As condições de leitura e de compreensão do objeto definem a construção do conceito matemático, a qual está em constante mudança.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of the present study is to reevaluate the logical thought of the English mathematician George Boole (1815 - 1864). Thus, our research centers on the mathematical analysis of logic in the context of the history of mathematics. In order to do so, we present various biographical considerations about Boole in the light of events that happened in the 19th century and their consequences for mathematical production. We briefly describe Boole's innovations in the areas of differential equations and invariant theory and undertake an analysis of Boole's logic, especially as formulated in the book The Mathematical Analysis of Logic, comparing it not only with the traditional Aristotelian logic, but also with modern symbolic logic. We conclude that Boole, as he intended, expanded logic both in terms of its content and also in terms of its methods and formal elaboration. We further conclude that his purpose was the mathematical modeling of deductive reasoning, which led him to present an innovative formalism for logic and, because the different ways it can be interpreted, a new conception of mathematics

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This PH.D. thesis is an attempt to show the beginning, evolution and unfolding of the making of a pedagogical work proposal based on culturally-built knowings in the heart of a traditional community, having as one of its starting points the knowings and doings experienced by dish-making women from Maruanum living in the city of Macapá, State of Amapá, Brazil. This proposal is strongly associated with the need we have to think about the nature of (ethnological)-mathematical knowledge generated by particular communities and about the way such knowledge can be discussed, worked out, and validated in learning environments, regardless of the level of instruction and the constraints imposed by government programs and educational institutions. Among its theoretical foundations are studies on instrumental activities that are typical of the Maruanum ceramics and investigative studies from the point of view of ethnomathematics. Methodological development took place with the application of activities, where traditional and instrumental knowledge observed in the production of ceramics had been adapted for and brought into the school environment , participative observation, as well as data collecting and organization techniques, such as interviews, statements, and audio an visual recordings. Analysis of the data collected focused on the relationship between the data-generating potential and the purpose of this study. Our aim is to make and estimate of the potential contributions from local situations and/or problems it would possibly bring to the formative learning of people involved in the educational processes of these communities, with a view to a spatial and temporal transformation of reality

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study aims to analyze the implications that the knowledge of an important work for the History of Science, De revolutionibus orbium coelestium , by Nicholas Copernicus, can bring for the formation of Mathematics professors. The study focuses on Book I of Copernicus s work, where, in the final part, is found the Table of the Subtense Straight Lines in a Circle, a true sine table constructed by the author. The study considers two theoretical references, the History of Science and of Mathematics, in the professor s formation searched amongst others in Miguel and Miorm, Brito, Neves and Martins, and Radford, and the necessary teaching knowledge professors mst have, on the basis of Gauthier, Schulman and Imbernón amongst others, through which it is established a net of knowledge grouped in dimensions such as mathematical, psycho pedagogical, cultural and practical diversity, that guide the study analysis. In the search for more necessary elements to enrich the analysis, beyond the theoretical research in Book I, it is carried through, with under graduation pupils, future Math professors, the construction of a sine table following the project used in De revolutionibus . The study still makes a description of the life and work of Nicholas Copernicus, detaching the historical context where the author lived and the conceptions about the Universe existing at that time. The research reveals that the studied work is an important source of culture, able to provide to the Mathematics professor in formation, beyond the conceptual and procedural mathematical knowledge, a cultural knowledge that allows him to be opened to the knowledge of other areas that not his specific area, and so to acquire knowledge about the world history, the development of sciences and of the society

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present paper is focused on pedagogical practices and continued lecturing formation of High School Mathematic teachers. Knowing the essential importance of the teacher at the educational process since he/she is the mediator on knowledge gathering by the scholars and continued formation meaning on that process, we hereby propose to investigate and compare what Math teachers think about their professional role, the kind of continued formation they receive and their development on teacher s knowledge and doing; to gather and compare what do Math teachers know about young people at public and private schools and their demands and as which find out if they link with the way as their students are taught. To develop our comparative research, we chose a qualitative focus and an investigation of ethnographic type. We took as the subject four Math teachers that work with high school 1st and 2nd grades in public and private schools, morning and afternoon shifts and license titles. The research results reveal differences in structural matter between the spaces, but the comparisons between teacher doings and knowledge reveal that the differences refer to the sort of formation and how often do the teachers search for it. Nevertheless, the reports pointed to continued lecturing formation offering and consistence problems and these reflect on their work and on its basis. The knowledge about youth and adolescence, such as theoric and methodological knowledge that lead their practices, are revealers of teachers difficulties in developing their activities according to the target public and nowadays educational demands

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta dissertação investiga como a prática da formação continuada em Matemática dos professores do Núcleo de Educação da Infância/Colégio de Aplicação (NEI/CAp) tem possibilitado a construção do currículo da Matemática para o ciclo de alfabetização nessa instituição. Assumimos os princípios metodológicos da abordagem qualitativa com ênfase na pesquisa colaborativa. Privilegiamos atividades de formação continuada organizadas em sessões de estudos e reflexões sobre a prática pedagógica que envolveram todos os partícipes. Para a construção dos dados realizamos a escolha de instrumentos e procedimentos metodológicos como a entrevista individual e as sessões reflexivas de videoformação e de estudo. Com a intensão de responder a questão central da pesquisa definimos duas categorias de interpretação: a formação continuada em Matemática dos professores do NEICAp dos anos iniciais do Ensino Fundamental e a construção do currículo da Matemática dos anos iniciais do Ensino Fundamental nesta escola. Constatamos que a prática da formação continuada em Matemática acontece dentro da própria instituição e tem como interesse, além da formação permanente dos seus professores, o desenvolvimento da escola e a aprendizagem dos alunos. Avaliamos que por meio de estudos e reflexões sobre as práticas docentes, análises de propostas pedagógicas de Secretarias de Educação e de outros documentos oficiais do Ministério da Educação, em momentos de formação continuada em contextos vivenciadas pelos professores do NEI/CAp, vem sendo possível construir o currículo desta instituição e, consequentemente, a sua proposta curricular, na qual privilegiamos a área da Matemática

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study analyses the difficulties that teachers of high school face in the process of the teaching of trigonometry through activities in a construtivist focus. It contains a review of some publications and dissertations related with the study of trigonometry elaborated in the last years by several authors. It resorts to the study of teaching engineering as an instrument used in the research. It also presents a set of activities which will serve as sample to other teachers of mathematics; and points ways for the overcome of the difficulties found

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, the didactical possibilities of investigation use in classroom, through an experience with high school students from Federal Center of Technological Education of Paraíba, as well as the study of conic sections were analysed. In order to fulfill our goals the theoretical conceptions concerning the meaninful learning in conection with the investigation of mathematics history were taken into account. The classroom research occurred by means of activities which encouraged the learner to investigate his own concepts on the conic sections. The results of the proposed activities showed the effectiveness and the efficiency of such a methodology as regards the making up of the required knowledge. They also reveal that the investigation in the classroom guides the ones involved, in this process, to have a wider look at the origins, the methods used and the several representations presented by mathematics that certainly lead, specially the students, to a meaninful learning

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This piece of work has investigated the alternative conceptions shown by students of secondary school, concerned to the concepts of warmth and temperature, aiming the elaboration and application of a learning strategy as of the diagnose risen from the conceptions present in students. The learning strategy was built up by a sequence of activities that involve History of Science and experiments, put in a course that had as a base the proposal of the Group of Redevelopment of Physics Teaching (GREF). We have used as the conductor wire of our research the development of thermo dynamics since the development of the first thermo machines, passing by the Industrial Revolution and the evolution of concepts of warmth and temperature. The learning strategy was applied to a group of second grade of secondary school in a public school in Mossoró (RN). By doing these activities we tried to become the concepts, which are part of thermo dynamics, more meaningful to the students. We have estimated that the application of the strategy has represented some profits to the students of the group, concerning to learning of laws and concepts of thermo dynamics (specifically the concepts of warmth and temperature), as well as what it is referred to the overcoming of its initial conceptions

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study we analyzed the development of a teaching experience, involving students with a bachelor s degree in mathematics from UFRN, based on the history of mathematics and mathematical investigations with the aim of contributing to the improvement of the teaching-learning of mathematics. The historical investigation tasks were planned and applied in the classroom, focusing on functional thought. The results obtained during the experience were described and evaluated based on authors who support the assumption of investigation and history as an alternative to the learning of mathematics. We emphasize that the material of analysis consisted of a work diary, audio recordings, questionnaires with testimony of the students involved, and, in addition, the assessment of the teacher of that subject. With regard to the mathematical content, the study was restricted to the concept of function, forms of representation and notation. It was evident that students showed great improvement with regard to the necessary formalization of the mathematical contents which were focused on, and to the active involvement of the students at different stages of the study. We can affirm that the completed study certainly represents significant contributions to an approach in the teaching-learning of functional thought

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Placed in the field of Didactic of Science, this paper proposes an approach to the introduction of the History of Science in science education, at high school level. It was designed and implemented a series of activities regarding the history of the Principle of Inertia. The aim of this approach was to give more meaning to scientific education, while opening new avenues for a better understanding of the processes of construction of scientific knowledge. The preparation of the activities involved a study of the historical development of the concept of motion, from the Aristotelian physics through physical movement concepts at medieval period, from Galileo, Gassendi, Descartes, until the first law of Newton. The strategy of teaching was applied to three classes of high school (night period) of a state public school at the city of Natal (RN). The results indicated the difficulty of overcoming alternative conceptions about movement by students. Nevertheless, we consider that the implementation of this strategy of teaching both represented gains for the learning of students, and contributed to the resizing of pedagogical practices of the teacher-researcher