996 resultados para Beta-turn Mimetics
Resumo:
Abstract A classic physiologic response to hypoxia in humans is the up-regulation of the ERYTHROPOIETIN (EPO) gene, which is the central regulator of red blood cell mass. The EPO gene, in turn, is activated by hypoxia inducible factor (HIF). HIF is a transcription factor consisting of an alpha subunit (HIF-alpha) and a beta subunit (HIF-beta). Under normoxic conditions, prolyl hydroxylase domain protein (PHD, also known as HIF prolyl hydroxylase and egg laying-defective nine protein) site specifically hydroxylates HIF-alpha in a conserved LXXLAP motif (where underlining indicates the hydroxylacceptor proline). This provides a recognition motif for the von Hippel Lindau protein, a component of an E3 ubiquitin ligase complex that targets hydroxylated HIF-alpha for degradation. Under hypoxic conditions, this inherently oxygen-dependent modification is arrested, thereby stabilizing HIF-alpha and allowing it to activate the EPO gene. We previously identified and characterized an erythrocytosis-associated HIF2A mutation, G537W. More recently, we reported two additional erythrocytosis-associated HIF2A mutations, G537R and M535V. Here, we describe the functional characterization of these two mutants as well as a third novel erythrocytosis-associated mutation, P534L. These mutations affect residues C-terminal to the LXXLAP motif. We find that all result in impaired degradation and thus aberrant stabilization of HIF-2alpha. However, each exhibits a distinct profile with respect to their effects on PHD2 binding and von Hippel Lindau interaction. These findings reinforce the importance of HIF-2alpha in human EPO regulation, demonstrate heterogeneity of functional defects arising from these mutations, and point to a critical role for residues C-terminal to the LXXLAP motif in HIF-alpha.
Photostability of a highly luminescent europium beta-diketonate complex in imidazolium ionic liquids
Resumo:
A high quantum yield and an enhanced photostability was found for a europium(III) tetrakis(2-thenoyltrifluoroacetonate) complex after dissolving the complex in a weakly-coordinating imidazolium ionic liquid.
Resumo:
The cis-dihydrodiol metabolite from methyl benzoate has been used as a synthetic precursor of carba-beta-L-galactopyranose, carba-beta-L-talopyranose and carba-alpha-L-talopyranose. The structures and absolute configurations of these carbasugars were determined by a combination of NMR spectroscopy, stereochemical correlation and X-ray crystallography.
Resumo:
Rhizopus delemar lipase catalyzed ester hydrolysis of the alpha-methoxy-beta-phenylpropanoate (I) affords the (R)-(+) and (S)-(-) isomers in > 84% enantiomeric excess. Abs. stereochem. was detd. by a single crystal X-ray anal. of a related synthetic analog. The activity of these two enantiomers on glucose transport in vitro and as anti-diabetic agents in vivo is reported and their unexpected equivalence attributed to an enzyme-mediated stereospecific isomerization of the (R)-(+) isomer. Binding studies using recombinant human PPAR-gamma (peroxisomal proliferator activated receptor gamma), now established as a mol. target for this compd. class, indicate a 20-fold higher binding affinity for the (S) antipode relative to the (R) antipode.
Resumo:
Buckle, D. R.; Cantello, B. C. C.; Cawthorne, M. A.; Coyle, P. J.; Dean, D. K.; Faller, A.; Haigh, D.; Hindley, R. M.; Lefcott, L. J.; et al. Dep. Medicinal Chem., Smithkline Beecham Pharmaceuticals, Surrey, UK. Bioorganic & Medicinal Chemistry Letters (1996), 6(17), 2127-2130. Publisher: Elsevier, CODEN: BMCLE8 ISSN: 0960-894X. Journal written in English. CAN 125:238227 AN 1996:573179 CAPLUS (Copyright (C) 2009 ACS on SciFinder (R)) Abstract The thiazolidine-2,4-dione ring of insulin-sensitizing antidiabetic agents can be replaced by ?-acyl-, ?-alkyl- and ?-(aralkyl)-carboxylic acids. The inclusion of an addnl. lipophilic moiety affords compds., equipotent to BRL 48482.
Resumo:
A review with 22 refs. The 5-benzylthiazolidine-2,4-dione moiety of insulin sensitizing antidiabetic agents can be replaced by a range of ?-heteroatom functionalized ?-phenylpropanoic acids. ?-Oxy-carboxylic acids show potent antidiabetic activity and one compd., the ?-ethoxyacid (SB 213068), is one of the most potent antihyperglycemic agents yet reported.
Resumo:
Background: The insulin-degrading enzyme gene (IDE) is a strong functional and positional candidate for late onset Alzheimer's disease (LOAD).
Resumo:
Research into the cause of Alzheimer's disease (AD) has identified strong connections to cholesterol. Cholesterol and cholesterol esters can modulate amyloid precursor protein (APP) processing, thus altering production of the A beta peptides that deposit in cortical amyloid plaques. Processing depends on the encounter between APP and cellular secretases, and is thus subject to the influence of cholesterol-dependent factors including protein trafficking, and distribution between membrane subdomains. We have directly investigated endogenous membrane beta-secretase activity in the presence of a range of membrane cholesterol levels in SH-SY5Y human neuroblastoma cells and human platelets. Membrane cholesterol significantly influenced membrane beta-secretase activity in a biphasic manner, with positive correlations at higher membrane cholesterol levels, and negative correlations at lower membrane cholesterol levels. Platelets from individuals with AD or mild cognitive impairment (n = 172) were significantly more likely to lie within the negative correlation zone than control platelets (n = 171). Pharmacological inhibition of SH-SY5Y beta-secretase activity resulted in increased membrane cholesterol levels. Our findings are consistent with the existence of a homeostatic feedback loop between membrane cholesterol level and membrane beta-secretase activity, and suggest that this regulatory mechanism is disrupted in platelets from individuals with cognitive impairment.