915 resultados para Multienzyme Complexes -- antagonists
Resumo:
The Al and In-diclofenac compounds were prepared. Thermogravimetry (TG) and X-ray diffraction powder patterns were used to characterize these compounds. Details concerning the dehydration and thermal decomposition as well as data of kinetic parameters have been described here. The kinetic studies of these stages were evaluated from several heating rates with mass sample of 2 and 5 mg in open crucibles under nitrogen atmosphere. The results of the present study improve the knowledge on these compounds including their dehydration and thermal stability. The obtained data leads to a dependence on the sample mass, which results in two kinetic behavior patterns.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de NÃvel Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work describes the synthesis, characterization, and the thermal behavior investigation of four palladium(II) complexes with general formulae [PdX(2)(mba)(2)], in which mba = N-methylbenzylamine and X = OAc(-) (1), Cl(-) (2), Br(-) (3) or I(-) (4). The complexes were characterized by elemental analysis, infrared vibrational spectroscopy, and (1)H nuclear magnetic resonance. The stoichiometry of the complexes was established by means of elemental analysis and thermogravimetry (TG). TG/DTA curves showed that the thermodecomposition of the four complexes occurred in 3-4 steps, leading to metallic palladium as final residue. The palladium content found in all curves was in agreement with the mass percentages calculated for the complexes. The following thermal stability sequence was found: 3 > 2 > 4 > 1. The geometry optimization of 1, 2, 3, and 4, calculated using the DFT/B3LYP method, yielded a slightly distorted square planar environment around the Pd(II) ion made by two anionic groups and two nitrogen atoms from the mba ligand (N1 and N2), in a trans-relationship.
Synthesis, characterization, and investigation of the thermal behavior of Cu(II) pyrazolyl complexes
Resumo:
This work reports the synthesis, characterization, and thermal behavior of three complexes of copper (II): [CuCl(2)(HPz)(4)] (1), [CuCl(2)(HdmPz)(4)] (2), and [CuCl(2)(HIPz)(4)] (3) (HPz = pyrazole; HdmPz = 3,5-dimethylpyrazole; HIPz = 4-iodopyrazole). The compounds were characterized by elemental analysis, infrared spectroscopy, and UV-Vis measurements. The thermal study of the compounds showed that the ligands are eliminated in 2-4 stages, yielding CuO as final residue.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this present work, barium ion was reacted with different ligands which are 5,7-dibromo, 5,7-dichloro, 7-iodo and 5-chloro-7-iodo-8-hydroxyquinoline, in acetone/ammonium hydroxide medium under constant stirring and the obtained compounds were as follows: (I) Ba[(C9H4ONBr2)(2)].1.5H(2)O; (II) Ba[(C9H4ONCl2)(OH)]. 1H(2)O; (III) Ba[(C9H5ONI)(2)]. 1H(2)O and (IV) Ba[(C9H4ONICl)(2)]. 5H(2)O, respectively. The compounds were characterized by elemental analysis, infrared absorption spectrum (IR), inductively coupled plasma spectrometry (ICP), simultaneous thermogravimetry-differential thermal analysis (TG-DTA) and differential scanning calorimeter (DSC).The final residue of the thermal decomposition was characterized as orthorhombic BaBr2 from (I); the intermediate residue, as a mixture of orthorhombic BaCO3 and BaCl2 and cubic BaO and the final residue, as a mixture of cubic and tetragonal BaO and orthorhombic BaCl2 (II); the intermediate residue, as orthorhombic BaCO3 and as a final residue, a mixture of cubic and tetragonal BaO from (III); and the intermediate residue, as a mixture of orthorhombic BaCO3 and BaCl2 and as a final residue, a mixture of cubic and tetragonal BaO and orthorhombic BaCl2 from (IV).
Resumo:
Pseudohalide complexes of copper(II) with aliphatic bidentate amines, [Cu(N-3)(2)(N,N-diEten)](2) 1, [Cu(NCO)(2)(N,N-diEten)](2) 2, [Cu(NCO)(2)(N,N-diMeen)](2) 3, [Cu(N-3)(NCS)(N,N'-diMeen)](2) 4 and [Cu(N-3)(NCO)(N,N-diMeen)](2) 5 (N,N-diEten=N,N-diethylethylenediamine; N,N-diMeen=N,N- dimethyl-ethylenediamine and N,N'-diMeen = N,N'-dimethylethylenediamine), were prepared, characterized and their thermal behavior was investigated by TG curves. According to thermal analysis and X-ray diffraction patterns all compounds decomposed giving copper(II) oxide as final product. The mechanisms of decomposition were proposed and an order of thermal stability was established.
Resumo:
The structure of the two azide-complexes, [Cu(N-3)(2)(N,N-diEten)](2) and [Cu(N-3)(2)(tmeen)](2), N,N-diEten=N,N-diethylethylenediamine; tmeen=N,N,N',N'-tetramethyethylenediamine in solutions of acetonitrile, acetone, tetrahydrofuran, chloroform and dichloromethane, were investigated by infrared spectroscopy. The data show that the complex [Cu(N-3)(2)(N,N-diEten)](2) mantains its structure in solution, while that for [Cu(N-3)(2)(tmeen)](2) is modified.
Resumo:
Two cis-related palladium(II) complexes [PdCl(2)(PPh(3))(tu)] (1) and [PdCl(2)(tmen)] (2) {PPh(3) = triphenylphosphine, tu = thiourea, tmen = N,N,N,N-tetramethylethylenediamine} have been synthesized and characterized by elemental analysis, IR and NMR spectroscopies, and single crystal X-ray diffraction. In 1, N-H center dot center dot center dot Cl hydrogen bonds are responsible for the formation of a dimer which connects to an adjacent one through weak C-H center dot center dot center dot Cl interactions, yielding 1D tapes. The crystal packing of compound 2 consists of zigzag ribbons of [PdCl(2)(tmen)] self-assembled by C-H center dot center dot center dot Cl hydrogen bonds which also holds the chains together, giving rise to a 2D layered structure. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Two binuclear cyclometallated compounds [Pd(C-2,N-dmba)(mu-N-3)](2) (1) and [Pd-2(C-2,N-dmba)(2)(mu-N-3)(mu-Cl)] (2) (dmba = N,N-dimethylbenzylarnine) have been synthesized and characterized by elemental 3 analysis, IR and NMR spectroscopies and single crystal X-ray diffraction crystallography. The ability of CH3 groups to form C(sp(3))-H...pi hydrogen bonds with phenyl rings is responsible for the molecular self-assembly within the crystals of 1 and 2. Compound 1 crystallizes as one-dimensional supramolecular chains whereas the crystal packing of 2 consists of a herringbone of sandwiches composed by two inversely related [Pd-2(C-2,N-dmba)(2)(mu-N-3)(mu-Cl)] molecules. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The electrochemical oxidation of (benzylideneacetone)dicarbonyl(phosphine)iron(0) and benzylideneacetone)dicarbonyl(phosphite)iron(0) complexes was studied by cyclic voltammetry and controlled potential electrolysis in 0.5 M NaClO4 (dimethyl formamide). The results suggest that the electrode process involves a complicated mechanism, the species formed in the first oxidation step being highly unstable and its decomposition producing free benzylideneacetone, free phosphine or phosphite, solvated iron(II) species and carbon monoxide which adsorbs on the platinum electrode. A linear relationship between E(p/2)ox and the ligand parameter P(L) was obtained with E(s) = 0.41 V and beta = 0.964, where E(s) and beta-denote electron-richness and polarizability of the metal centre, respectively.
Resumo:
Electrolysis has been examined as a method of synthesis for [(L)(dppb)Ru(mu-Cl)(3)RuCl(dppb)] complexes, where dppb = 1,4-bis(diphenylphosphino)butane and L = pyridine (py), 4-methylpyridine (4-pic) or dimethyl sulfoxide (DMSO), by using [RuCl3(dppb)(L)] as precursors. The products of the electrolysis were characterized by P-31-{H-1} NMR, cyclic voltammetry and near infrared spectroscopy. The presence of the [Ru2Cl5(dppb)(2)] complex in the electrochemical cell suggests a mechanism by which the starting original species from the bulk solution reacts with the reduced form [RuCl2(dppb)(L)] generated at the surface of the electrode. The crystal structure of the precursor mer-[RuCl3(dppb)(4-pic)] was determined by X-ray diffraction.
Resumo:
Alkylsulphinylpyridine ligands containing three potential donor centres: N, S and O atoms and two complexes of general formula trans-[PtCl2(PEt3)PySOR)] (R = Me and Pr-n) were prepared and characterized by elemental analysis, i.r. spectroscopy, H-1- and P-31-n.m.r. and X-ray crystallography. The ambidentate ligands act in both situations as monodentate ligands, bonded to the metal exclusively through the nitrogen atom. The crystal structures revealed the occurrence of discrete molecules and, in both complexes, the Pt atoms are coordinated in square planar arrangements by two chloride ions, in a trans configuration, by the pyridine nitrogen atom, and by the phosphine P atom. The oxygen atoms do not take part in the complexation scheme.