996 resultados para Magnetized electrons


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ballistic transport of Rashba electrons in a straight structure in two-dimensional electron gas is studied. It is found that there is no mixing between the wave functions of spin up and spin down states, and the transfer matrix is independent for the spin in every interface. The influence of the structure and Rashba coefficient on the electron transport is investigated. Our results indicate that the transmission probabilities are independent of the sign and magnitude of the Rashba coefficient and it depends on the shape of the structure, especially the stub width. The antiresonance is found, where the quasiconfined state is formed in the center part of the structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the electronic structure and magnetic coupling properties of Gd doped AlN have been investigated using first-principles method. We found that in the AlN:Gd system, due to the s-f coupling allowed by the symmetry, the exchange splitting of the conduction band is much larger than that of the valence band, which makes the electron-mediated ferromagnetism possible in this material. This property is also confirmed by the energy differences between anti-ferromagnetic and ferromagnetic phase for Al14Gd2N16 with different concentrations of electrons (holes), as well as by the calculated exchange constants. The result indicates that Gd-doped AlN is a promising candidate for the applications in future spintronic devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electronic properties of wurtzite/zinc-blende (WZ/ZB) heterojunction GaN are investigated using first-principles methods. A small component of ZB stacking formed along the growth direction in the WZ GaN nanowires does not show a significant effect on the electronic property, whereas a charge separation of electrons and holes occurs along the directions perpendicular to the growth direction in the ZB stacking. The later case provides an efficient way to separate the charge through controlling crystal structure. These results have significant implications for most state of the art excitonic solar cells and the tuning region in tunable laser diodes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Real-time detection of single electron tunneling through a T-shaped double quantum dot is simulated, based on a Monte Carlo scheme. The double dot is embedded in a dissipative environment and the presence of electrons on the double dot is detected with a nearby quantum point contact. We demonstrate directly the bunching behavior in electron transport, which leads eventually to a super-Poissonian noise. Particularly, in the context of full counting statistics, we investigate the essential difference between the dephasing mechanisms induced by the quantum point contact detection and the coupling to the external phonon bath. A number of intriguing noise features associated with various transport mechanisms are revealed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Time-resolved Kerr rotation (TRKR) measurements based on pump-probe arrangement were carried out at 5 K on the monolayer fluctuation induced InAs/GaAs quantum disks grown on GaAs substrate without external magnetic field. The lineshape of TRKR signals shows an unusual dependence on the excitation wavelength, especially antisymmetric step-shaped structures appearing when the excitation wavelength was resonantly scanned over the heavy- and light-hole subbands. Moreover, these step structures possess an almost identical decay time of similar to 40 Ps which is believed to be the characteristic spin dephasing time of electrons in the extremely narrow InAs/GaAs quantum disks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamic process of light illumination of GaAs is studied numerically in this paper to understand the photoquenching characteristics of the material. This peculiar behavior of GaAs is usally ascribed to the existence of EL2 states and their photodriven metastable states. To understand the conductivity quenching, we have introduced nonlinear terms describing the recombination of the nonequilibrium free electrons and holes into the calculation. Though some photoquenching such as photocapacitance, infrared absorption, and electron-paramagnetic-resonance quenching can be explained qualitatively by only considering the internal transfer between the EL2 state and its metastability, it is essential to take the recombination into consideration for a clear understanding of the photoquenching process. The numerical results and approximate analytical approach are presented in this paper for the first time to our knowledge. The calculation gives quite a reasonable explanation for n-type semiconducting GaAs to have infrared absorption quenching while lacking photoconductance quenching. Also, the calculation results have allowed us to interpret the enhanced photoconductance phenomenon following the conductance quenching in typical semi-insulating GaAs and have shown the expected thermal recovery temperature of about 120 K. The numerical results are in agreement with the reported experiments and have diminished some ambiguities in previous works.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have studied the sequential tunneling of doped weakly coupled GaAs/ALAs superlattices (SLs), whose ground state of the X valley in AlAS layers is designed to be located between the ground state (E(GAMMA1)) and the first excited state (E(GAMMA2)) of the GAMMA valley in GaAs wells. The experimental results demonstrate that the high electric field domain in these SLs is attributed to the GAMMA-X sequential tunneling instead of the usual sequential resonant tunneling between subbands in adjacent wells. Within this kind of high field domain, electrons from the ground state in the GaAs well tunnel to the ground state of the X valley in the nearest AlAs layer, then through very rapid real-space transfer relax from the X valley in the AlAs layer to the ground state of the GAMMA valley of the next GaAs well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have used the rectangular confinement potential to describe Shubnikov-deHaas oscillations produced by one-dimensional electrons confined in deep mesa structures. The edge distortion of the confinement potential caused by electrostatic image forces is taken into account. The model contains no fitting parameters and relates well with experimental data. The comparison with earlier reported parabolic model is presented,

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The usual application of the Lei-Ting balance equation method for treating electron transport problems makes use of a Fermi distribution function for the electron motion relative to the center of mass. It is pointed out that this presumes the existence of a moving frame of reference that is dynamically equivalent to the rest frame of reference, and this is only true for electrons with a constant effective mass. The method is thus inapplicable to problems where electrons governed by a general energy-band dispersion E(k) are important (such as in miniband conduction). It is demonstrated that this difficulty can be overcome by introducing a distribution function for a drifting electron gas by maximizing the entropy subject to a prescribed average drift velocity. The distribution function reduces directly to the usual Fermi distribution for electron motion relative to the center of mass in the special case of E(k)=($) over bar h(2)\k\(2)/2m*. This maximum entropy treatment of a drifting electron gas provides a physically more direct as well as a more general basis for the application of the balance equation method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By using a transfer-matrix method on the basis of two-dimensional (2D) Bloch sums in accordance with a tight-binding scheme, a self-consistent calculation on the resonant tunneling in asymmetric double-barrier structures is presented, in which contributions to resonant tunneling from both three-dimensional (3D) electrons in the contacts and 2D electrons in the spacer or accumulation layers are considered simultaneously. The charge buildup effect on the current versus voltage (I-V) curves is evaluated systematically, showing quantitatively how it results in the I-V bistability and enhanced differences between I-V curves for positive and negative bias in an asymmetric double-barrier structure. Special attention is focused on the interaction between 3D-2D and 2D-2D resonant-tunneling processes, including the suppression of 2D-2D resonant tunneling by the charge buildup in the well accompanying the 3D-2D resonant tunneling. The effects of the emitter doping condition (doping concentration, spacer thickness) on the presence of two types of quasi-2D levels in the emitter accumulation layers, and on the formation of a potential bulge in the emitter region, are discussed in detail in relation to the tunneling process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three causes involved in the instability of the ISFET are proposed in this study. First, it is ascertained that hydroxyl group resident at the surface of the Si3N4 film or in the electrolyte solution is most active and subject to gain or loss of electrons. This is one of the main causes for ISFET structural instability. Secondly, the stability of the pH-sensitive FET varies with deposition conditions in the fabrication process of the ISFET. This proves to be another cause of ISFET instability. Thirdly, the pH of the measured solution varies with the measuring process and time, contributing to the instability, but is not a cause of the instability of the pH-ISFET itself. We utilized the technique of readjusting and controlling the ratio of hydroxyl groups to amine groups to enhance the stability of the ISFET. Our techniques to improve stability characteristics proved to be effective in practice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A two-dimensional atomic scattering theory is developed for scattering of electrons by a circularly symmetric quantum structure in the two-dimensional electron gas. It is found that the scattering cross section oscillates as a function of ka where k is the electron wave vector and a is the radius of the cylindrical potential barrier. If there is a quantum well inside the potential barrier, there appears a series of sharp resonant-tunneling peaks superposed on the original scattering-cross-section curves. The width of the resonant-tunneling peak depends sensitively on the thickness, the height of the potential barrier, and the electron energy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results are reported of electric-field dependence on thermal emission of electrons from the 0.40 eV level at various temperatures in InGaP by means of deep-level transient spectroscopy. The data are analyzed according to the Poole-Frankel emission from the potentials which are assumed to be Coulombic, square well, and Gaussian, respectively. The emission mte from this level is strongly field dependent. It is found that the Gaussian potential model is more reasonable to describe the phosphorus-vacancy-induced potential in InGaP than the Coulombic and square-well ones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microscopic characteristics of the GaAs(100) surface treated with P2S5/NH4OH solution has been investigated by using Auger-electron spectroscopy (AES) and x-ray photoemission spectroscopy (XPS). AES reveals that only phosphorus and sulfur, but not oxygen, are contained in the interface between passivation film and GaAs substrate. Using XPS it is found that both Ga2O3 and As2O3 are removed from the GaAs surface by the P2S5/NH4OH treatment; instead, gallium sulfide and arsenic sulfide are formed. The passivation film results in a reduction of the density of states of the surface electrons and an improvement of the electronic and optical properties of the GaAs surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a model for electrons confined in narrow conducting channels by a parabolic well under moderate to high magnetic fields which takes into account a cutoff in the filling of the subbands. Such a cutoff gives rise to energy-separated subbands and a two-dimensional (2D) like subband depopulation, resulting in a relation between sublevel index n and inverse magnetic field B-1 such that in the high-field regime it changes over to the well-known 2D form as expected, and in the moderate field regime it shows pronounced deviation from linearity. This agrees well with the experimental results. The linear region of the n-B-1 experimental plot is believed to arise from the two dimensionality of the system. Calculations show that no resolvable 1D sublevel exists in the 0.5-mu-m-wide wire at very small magnetic fields (including zero field), which agrees qualitatively with the experimental results found in other wires that the Hall resistance, R(H), approaches its classical value B/n(e)e in this region and R(H) = 0 at B = 0, where n(e) is the electron concentration. In this model the linear and nonlinear regions in the experimental n-B-1 plot are used to extract the characteristic frequency omega-0, and the effective 2D electron concentration N(e)2D, respectively.