961 resultados para KDV EQUATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 81R50, 16W50, 16S36, 16S37.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 35L15, 35B40, 47F05.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 34K15, 34C10.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Иван Димовски, Юлиан Цанков - Предложено е разширение на принципa на Дюамел. За намиране на явно решение на нелокални гранични задачи от този тип е развито операционно смятане основано върху некласическа двумерна конволюция. Пример от такъв тип е задачата на Бицадзе-Самарски.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Георги Венков, Христо Генев - Разглеждаме един клас от L^2 - критични нелинейни уравнения на Шрьодингер в R^(1+n) с конволюционна нелинейност от тип Хартри. Целта ни е да установим локалното и глобално съществуване на решенията, както и коректност на задачата на Коши в достатъчно малка околност на нулата в пространството L^2 (R^n). Като естествено следствие на глобалните резултати ние доказваме съществуване на оператор на разсейване за малки начални условия.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Недю И. Попиванов, Тодор П. Попов, Рудолф Шерер - Разглеждат се четиримерни гранични задачи за нехомогенното вълново уравнение. Те са предложени от М. Протер като многомерни аналози на задачата на Дарбу в равнината. Известно е, че единственото обобщено решение може да има силна степенна особеност само в една гранична точка. Тази сингулярност е изолирана във върха на характеристичния конус и не се разпространява по конуса. Друг аспект на проблема е, че задачата не е фредхолмова, тъй като има безкрайномерно коядро. Предишни резултати сочат, че решението може да има най-много експоненциален ръст, но оставят открит въпроса дали наистина съществуват такива решения. Показваме, че отговора на този въпрос е положителен и строим обобщено решение на задачата на Протер с експоноциална особеност.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Иван Хр. Димовски, Юлиан Ц. Цанков - Предложен е метод за намиране на явни решения на клас двумерни уравнения на топлопроводността с нелокални условия по пространствените променливи. Методът е основан на директно тримерно операционно смятане. Класическата дюамелова конволюция е комбинирана с две некласически конволюции за операторите ∂xx и ∂yy в една тримерна конволюция. Съответното операционно смятане използва мултипликаторни частни. Мултипликаторните частни позволяват да се продължи принципът на Дюамел за пространствените променливи и да се намерят явни решения на разглежданите гранични задачи. Общите разглеждания са приложени в случая на гранични условия от типа на Йонкин. Намерени са експлицитни решения в затворен вид.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 74J30, 34L30.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 35Q35, 37K10.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classi cation: 49L60, 60J60, 93E20.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60H15, 60H40

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An algorithm is produced for the symbolic solving of systems of partial differential equations by means of multivariate Laplace–Carson transform. A system of K equations with M as the greatest order of partial derivatives and right-hand parts of a special type is considered. Initial conditions are input. As a result of a Laplace–Carson transform of the system according to initial condition we obtain an algebraic system of equations. A method to obtain compatibility conditions is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 35L15, 35B40, 47F05.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 35L05, 35P25, 47A40.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 47H04, 65K10.