994 resultados para HYDROGEN PHOSPHATE
Resumo:
It is well known that the value of room-temperature conductivity sigma(RT) of boron-doped silicon films is one order lower than that of phosphorus-doped silicon films, when they are deposited in an identical plasma-enhanced chemical vapour deposition system. We use surface acoustic wave and secondary-ion mass spectrometry techniques to measure the concentration of total and electrically active boron atoms. It is shown that only 0.7% of the total amount of incorporated boron is electrically active. This is evidence that hydrogen atoms can passivate substitutional B-Si bonds by forming the neutral B-H-Si complex. By irradiating the boron-doped samples with a low-energy electron beam, the neutral B-H-Si complex converts into electrically active B-Si bonds and the conductivity can be increased by about one order of magnitude, up to the same level as that of phosphorus-doped samples.
Resumo:
By using the technique of elastic recoil detection (ERD), we have measured the hydrogen profiles in a-Si:H/a-Si structure samples annealed at various temperatures with and without electrical bias, and investigated the influence of electrical bias on hydrogen diffusion. The results show that hydrogen diffusion in a-Si is significantly enhanced by the action of electrical bias. The existence of the excess carriers, which are introduced by electrical injection, is considered to be responsible for the enhancement of hydrogen diffusion, and the microprocess of hydrogen transport has been exploited.
Resumo:
Up to now, in most of the research work done on the effect of hydrogen on a Schottky barrier, the hydrogen was introduced into the semiconductor before metal deposition. This letter reports that hydrogen can be effectively introduced into the Schottky barriers (SBs) of Au/n-GaAs and Ti/n-GaAs by plasma hydrogen treatment (PHT) after metal deposition on [100] oriented n-GaAs substrates. The Schottky barrier height (SBH) of a SB containing hydrogen shows the zero/reverse bias annealing (ZBA/RBA) effect. ZBA makes the SBH decrease and RBA makes it increase. The variations in the SBHs are reversible. In order to obtain obvious ZBA/RBA effects, selection of the temperature for plasma hydrogen treatment is important, and it is indicated that 100-degrees-C for Au/n-GaAs and 150-degrees-C for Ti/n-GaAs are suitable temperatures. It is concluded from the analysis of experimental results that only the hydrogen located at or near the metal-semiconductor interface, rather than the hydrogen in the bulk of either the semiconductor or the metal, is responsible for the ZBA/RBA effect on SBH.
Resumo:
Quantitative determinations of the hydrogen content and its profile in silicon nitride sensitive films by the method of resonant nuclear reaction have been carried out. At a deposition temperature of 825-degrees-C, hydrogen exists in an LPCVD silicon nitride sensitive film and the hydrogen content on its surface is in the range (8-16) x 10(21) cm-3, depending on the different deposition processes used. This hydrogen content is larger than the (2-3) x 10(21) cm-3 in its interior part, which is homogeneous. Meanwhile, we observe separate peaks for the chemical bonding configurations of Si-H and N-H bonds, indicated by the infrared absorption bands Si-O (1106 cm-1), N-H (1200 cm-1), Si-H-3 (2258 cm-1) and N-H-2 (3349 cm-1), respectively. The worse linear range of the ISFET is caused by the presence of oxygen on the surface of the silicon nitride sensitive film. The existence of chemical bonding configurations of Si-H, N-H and N-Si on its surfaces is favourable for its pH response.
Resumo:
Neutron transmutation doped (NTD) silicon crystals grown in a hydrogen atmosphere have been investigated by infrared absorption spectroscopy at a low temperature (10 K). An effective-mass-like donor state HD0/+ has been found at 110.8 me V below the conduction band bottom after rapid thermal annealing (RTA). The HD0/+ formation mechanism after NTD and RTA is briefly discussed, and tentatively attributed to H atoms present in the vicinity of some residual irradiation defects, like a complex of a H atom and a H-saturated vacancy.
Resumo:
Infrared absorption experiments have been performed on hydrogenated and deuterated bulk boron- and aluminum-doped-Si and implanted P, As, and Sb donors in silicon. A first evidence of complex formation in bulk p-type Si is obtained and the spectra confirm the anomalous 3.3-cm-1 deuterium frequency shift with respect to boron isotopes. The ratio of the D-B-11 and D-B-10 peak areas is found to be the same as that of the two boron isotopes natural abundance. In donor-implanted silicon, a quantitative analysis of the obtained data has allowed a rough estimate of the passivating rate due to diffusing deuterium. While the frequencies of the various vibrational lines are found to be in agreement with those reported in the literature, the data on the broad line at 1660 cm-1 (H) or 1220 cm-1 (D) seem to suggest an assignment of this peak to a complex in the bulk involving some type of defect due to the implantation process.
Resumo:
Dichlorosilane, a gas at normal temperature with a boiling point of 8.3 degrees C, is very difficult to sample and detect using conventional methods. We reduced phosphorus in dichlorosilane to PH3 by hydrogen at high temperature, then PH3 was separated from chlorosilanes by NaOH solution and from other hydrides by chromatographic absorption. Thus the problem of interference of chlorosilanes and other hydrides was overcome and PH, was measured by a double flame photometric detector at 526 nm. This method was sensitive, reliable and convenient and the sensitivity reached as low as 0.04 mu g/l.