978 resultados para Electron beam tomography
Resumo:
The development and tests of an iterative reconstruction algorithm for emission tomography based on Bayesian statistical concepts are described. The algorithm uses the entropy of the generated image as a prior distribution, can be accelerated by the choice of an exponent, and converges uniformly to feasible images by the choice of one adjustable parameter. A feasible image has been defined as one that is consistent with the initial data (i.e. it is an image that, if truly a source of radiation in a patient, could have generated the initial data by the Poisson process that governs radioactive disintegration). The fundamental ideas of Bayesian reconstruction are discussed, along with the use of an entropy prior with an adjustable contrast parameter, the use of likelihood with data increment parameters as conditional probability, and the development of the new fast maximum a posteriori with entropy (FMAPE) Algorithm by the successive substitution method. It is shown that in the maximum likelihood estimator (MLE) and FMAPE algorithms, the only correct choice of initial image for the iterative procedure in the absence of a priori knowledge about the image configuration is a uniform field.
Resumo:
Ground clutter caused by anomalous propagation (anaprop) can affect seriously radar rain rate estimates, particularly in fully automatic radar processing systems, and, if not filtered, can produce frequent false alarms. A statistical study of anomalous propagation detected from two operational C-band radars in the northern Italian region of Emilia Romagna is discussed, paying particular attention to its diurnal and seasonal variability. The analysis shows a high incidence of anaprop in summer, mainly in the morning and evening, due to the humid and hot summer climate of the Po Valley, particularly in the coastal zone. Thereafter, a comparison between different techniques and datasets to retrieve the vertical profile of the refractive index gradient in the boundary layer is also presented. In particular, their capability to detect anomalous propagation conditions is compared. Furthermore, beam path trajectories are simulated using a multilayer ray-tracing model and the influence of the propagation conditions on the beam trajectory and shape is examined. High resolution radiosounding data are identified as the best available dataset to reproduce accurately the local propagation conditions, while lower resolution standard TEMP data suffers from interpolation degradation and Numerical Weather Prediction model data (Lokal Model) are able to retrieve a tendency to superrefraction but not to detect ducting conditions. Observing the ray tracing of the centre, lower and upper limits of the radar antenna 3-dB half-power main beam lobe it is concluded that ducting layers produce a change in the measured volume and in the power distribution that can lead to an additional error in the reflectivity estimate and, subsequently, in the estimated rainfall rate.
Resumo:
Weather radar observations are currently the most reliable method for remote sensing of precipitation. However, a number of factors affect the quality of radar observations and may limit seriously automated quantitative applications of radar precipitation estimates such as those required in Numerical Weather Prediction (NWP) data assimilation or in hydrological models. In this paper, a technique to correct two different problems typically present in radar data is presented and evaluated. The aspects dealt with are non-precipitating echoes - caused either by permanent ground clutter or by anomalous propagation of the radar beam (anaprop echoes) - and also topographical beam blockage. The correction technique is based in the computation of realistic beam propagation trajectories based upon recent radiosonde observations instead of assuming standard radio propagation conditions. The correction consists of three different steps: 1) calculation of a Dynamic Elevation Map which provides the minimum clutter-free antenna elevation for each pixel within the radar coverage; 2) correction for residual anaprop, checking the vertical reflectivity gradients within the radar volume; and 3) topographical beam blockage estimation and correction using a geometric optics approach. The technique is evaluated with four case studies in the region of the Po Valley (N Italy) using a C-band Doppler radar and a network of raingauges providing hourly precipitation measurements. The case studies cover different seasons, different radio propagation conditions and also stratiform and convective precipitation type events. After applying the proposed correction, a comparison of the radar precipitation estimates with raingauges indicates a general reduction in both the root mean squared error and the fractional error variance indicating the efficiency and robustness of the procedure. Moreover, the technique presented is not computationally expensive so it seems well suited to be implemented in an operational environment.
Resumo:
BACKGROUND: The frequency of CT procedures has registered a significant increase over the last decade, which led at the international level to an increasing concern on the radiological risk associated with the use of CT especially in paediatrics. This work aimed at investigating the use of computed tomography in Switzerland, following the evolution of CT frequency and dose data over a decade and comparing it to data reported in other countries. METHODS: The frequency and dose data related to CT are obtained by means of a nationwide survey. National frequencies were established by projecting the collected data, using the ratio of the number of CT units belonging to the respondents to the total number of CT units in the country. The effective doses per examination were collected during an auditing campaign. RESULTS: In 2008 about 0.8 Million CT procedures (~ 100 CT examinations / 1000 population) were performed in the country, leading to a collective effective dose of more than 6000 man.Sv (0.8 mSv/caput). In a decade the frequency of CT examinations averaged over the population and the associated average effective dose per caput increased by a factor of 2.2 and 2.9 respectively. CONCLUSIONS: Although the contribution of CT to the total medical X-rays is 6% in terms of the frequency, it represents 68% in terms of the collective effective dose. These results are comparable to those reported in a number of countries in Europe and America with similar health level.
Resumo:
Diacylglycerol is necessary for trans-Golgi network (TGN) to cell surface transport, but its functional relevance in the early secretory pathway is unclear. Although depletion of diacylglycerol did not affect ER-to-Golgi transport, it led to a redistribution of the KDEL receptor to the Golgi, indicating that Golgi-to-ER transport was perturbed. Electron microscopy revealed an accumulation of COPI-coated membrane profiles close to the Golgi cisternae. Electron tomography showed that the majority of these membrane profiles originate from coated buds, indicating a block in membrane fission. Under these conditions the Golgi-associated pool of ARFGAP1 was reduced, but there was no effect on the binding of coatomer or the membrane fission protein CtBP3/BARS to the Golgi. The addition of 1,2-dioctanoyl-sn-glycerol or the diacylglycerol analogue phorbol 12,13-dibutyrate reversed the effects of endogenous diacylglycerol depletion. Our findings implicate diacylglycerol in the retrograde transport of proteins from Golgi to the ER and suggest that it plays a critical role at a late stage of COPI vesicle formation.
Resumo:
PURPOSE: 3'-deoxy-3'-[(18)F]fluorothymidine ([(18)F]FLT), a cell proliferation positron emission tomography (PET) tracer, has been shown in numerous tumors to be more specific than 2-deoxy-2-[(18)F]fluoro-D: -glucose ([(18)F]FDG) but less sensitive. We studied the capacity of a nontoxic concentration of 5-fluoro-2'-deoxyuridine (FdUrd), a thymidine synthesis inhibitor, to increase uptake of [(18)F]FLT in tumor xenografts. METHODS: The duration of the FdUrd effect in vivo on tumor cell cycling and thymidine analogue uptake was studied by varying FdUrd pretreatment timing and holding constant the timing of subsequent flow cytometry and 5-[(125)I]iodo-2'-deoxyuridine biodistribution measurements. In [(18)F]FLT studies, FdUrd pretreatment was generally performed 1 h before radiotracer injection. [(18)F]FLT biodistributions were measured 1 to 3 h after radiotracer injection of mice grafted with five different human tumors and pretreated or not with FdUrd and compared with [(18)F]FDG tumor uptake. Using microPET, the dynamic distribution of [(18)F]FLT was followed for 1.5 h in FdUrd pretreated mice. High-field T2-weighted magnetic resonance imaging (MRI) and histology were used comparatively in assessing tumor viability and proliferation. RESULTS: FdUrd induced an immediate increase in tumor uptake of 5-[(125)I]iodo-2'-deoxyuridine, that vanished after 6 h, as also confirmed by flow cytometry. Biodistribution measurements showed that FdUrd pretreatment increased [(18)F]FLT uptake in all tumors by factors of 3.2 to 7.8 compared with controls, while [(18)F]FDG tumor uptake was about fourfold and sixfold lower in breast cancers and lymphoma. Dynamic PET in FdUrd pretreated mice showed that [(18)F]FLT uptake in all tumors increased steadily up to 1.5 h. MRI showed a well-vascularized homogenous lymphoma with high [(18)F]FLT uptake, while in breast cancer, a central necrosis shown by MRI was inactive in PET, consistent with the histomorphological analysis. CONCLUSION: We showed a reliable and significant uptake increase of [(18)F]FLT in different tumor xenografts after low-dose FdUrd pretreatment. These results show promise for a clinical application of FdUrd aimed at increasing the sensitivity of [(18)F]FLT PET.
Resumo:
Previously reported results on deep level optical spectroscopy, optical absorption, deep level transient spectroscopy, photoluminescence excitation, and time resolved photoluminescence are reviewed and discussed in order to know which are the mechanisms involved in electron capture and emission of the Ti acceptor level in GaP. First, the analysis indicates that the 3T1(F) crystal¿field excited state is not in resonance with the conduction band states. Second, it is shown that both the 3T2 and 3T1(F) excited states do not play any significant role in the process of electron emission and capture.
Resumo:
The self-assembled growth of GaN nanorods on Si (111) substrates by plasma-assisted molecular beam epitaxy under nitrogen-rich conditions is investigated. An amorphous silicon nitride layer is formed in the initial stage of growth that prevents the formation of a GaN wetting layer. The nucleation time was found to be strongly influenced by the substrate temperature and was more than 30 min for the applied growth conditions. The observed tapering and reduced length of silicon-doped nanorods is explained by enhanced nucleation on nonpolar facets and proves Ga-adatom diffusion on nanorod sidewalls as one contribution to the axial growth. The presence of Mg leads to an increased radial growth rate with a simultaneous decrease of the nanorod length and reduces the nucleation time for high Mg concentrations.
Electrical transport quantum effects in the In0.53Ga0.47As/In0.52Al0.48As heterostructure on silicon
Resumo:
Electrical transport in a modulation doped heterostructure of In0.53Ga0.47As/In0.52Al0.48As grown on Si by molecular beam epitaxy has been measured. Quantum Hall effect and Subnikov¿De Haas oscillations were observed indicating the two¿dimensional character of electron transport. A mobility of 20¿000 cm2/V¿s was measured at 6 K for an electron sheet concentration of 1.7×1012 cm¿2. Transmission electron microscopy observations indicated a significant surface roughness and high defect density of the InGaAs/InAlAs layers to be present due to the growth on silicon. In addition, fine¿scale composition modulation present in the In0.53Ga0.47As/In0.52Al0.48As may further limit transport properties.
Resumo:
Optical absorption spectra and transmission electron microscopy (TEM) observations on InGaAs/InP layers under compressive strain are reported. From the band¿gap energy dispersion, the magnitude of the strain inhomogeneities. Is quantified and its microscopic origin is analyzed in view of the layer microstructure. TEM observations reveal a dislocation network at the layer interface the density of which correlates with ¿¿. It is concluded that local variations of dislocation density are responsible for the inhomogeneous strain field together with another mechanism that dominates when the dislocation density is very low.
Resumo:
The changes undergone by the Si surface after oxygen bombardment have special interest for acquiring a good understanding of the Si+-ion emission during secondary ion mass spectrometry (SIMS) analysis. For this reason a detailed investigation on the stoichiometry of the builtup surface oxides has been carried out using in situ x-ray photoemission spectroscopy (XPS). The XPS analysis of the Si 2p core level indicates a strong presence of suboxide chemical states when bombarding at angles of incidence larger than 30°. In this work a special emphasis on the analysis and interpretation of the valence band region was made. Since the surface stoichiometry or degree of oxidation varies with the angle of incidence, the respective valence band structures also differ. A comparison with experimentally measured and theoretically derived Si valence band and SiO2 valence band suggests that the new valence bands are formed by a combination of these two. This arises from the fact that Si¿Si bonds are present on the Si¿suboxide molecules, and therefore the corresponding 3p-3p Si-like subband, which extends towards the Si Fermi level, forms the top of the respective new valence bands. Small variations in intensity and energy position for this subband have drastic implications on the intensity of the Si+-ion emission during sputtering in SIMS measurements. A model combining chemically enhanced emission and resonant tunneling effects is suggested for the variations observed in ion emission during O+2 bombardment for Si targets.
Resumo:
We perform a structural and optical characterization of InAs1¿xNx epilayers grown by molecular beam epitaxy on InAs substrates x 2.2% . High-resolution x-ray diffraction HRXRD is used to obtain information about the crystal quality and the strain state of the samples and to determine the N content of the films. The composition of two of the samples investigated is also obtained with time-of-flight secondary ion mass spectroscopy ToF-SIMS measurements. The combined analysis of the HRXRD and ToF-SIMS data suggests that the lattice parameter of InAsN might significantly deviate from Vegard"s law. Raman scattering and far-infrared reflectivity measurements have been carried out to investigate the incorporation of N into the InAsN alloy. N-related local vibrational modes are detected in the samples with higher N content. The origin of the observed features is discussed. We study the compositional dependence of the room-temperature band gap energy of the InAsN alloy. For this purpose, photoluminescence and optical absorption measurements are presented. The results are analyzed in terms of the band-anticrossing BAC model. We find that the room-temperature coupling parameter for InAsN within the BAC model is CNM=2.0 0.1 eV.
Resumo:
Stress in local isolation structures is studied by micro‐Raman spectroscopy. The results are correlated with predictions of an analytical model for the stress distribution and with cross‐sectional transmission electron microscopy observations. The measurements are performed on structures on which the Si3N4 oxidation mask is still present. The influence of the pitch of the periodic local isolation pattern, consisting of parallel lines, the thickness of the mask, and the length of the bird"s beak on the stress distribution are studied. It is found that compressive stress is present in the Si substrate under the center of the oxidation mask lines, with a magnitude dependent on the width of the lines. Large tensile stress is concentrated under the bird"s beak and is found to increase with decreasing length of the bird"s beak and with increasing thickness of the Si3N4 film.