917 resultados para Biotic communities--Ontario--Short Hills Provincial Park.
Resumo:
The impacts of fragmentation and recreational use on the hemiboreal urban forest understorey vegetation and the microbial community of the humus layer (the phospholipid fatty acid (PLFA) pattern, microbial biomass and microbial activity, measured as basal respiration) were examined in the greater Helsinki area, southern Finland. Trampling tolerance of 1) herb-rich OMT, 2) mesic MT, and 3) sub-xeric VT forests (in decreasing order of fertility) was studied by comparing relative understorey vegetation cover (urban/untrampled reference ratio) of the three forest types. The trampling tolerance of forest vegetation increased with the productivity of the site (sub-xeric < mesic < herb-rich). Wear of understorey vegetation correlated positively with the number of residents (i.e., recreational pressure) around the forest patch. An increase of 15000 residents within a radius of 1 km around a forest patch was associated with ca. 30% decrease in the relative understorey vegetation cover. The cover of dwarf shrub Vaccinium myrtillus in particular decreased with increasing levels of wear. The cover of mosses in urban forests was less than half of that in untrampled reference areas. Cover of tree saplings, mainly Sorbus aucuparia, and some resilient herbs was higher than in the reference areas. In small urban forest fragments, broad-leaved trees, grasses and herbs were more abundant and mosses were scarcer than in larger urban forest areas. Thus, due to trampling and edge effects, resilient herb and grass species are replacing sensitive dwarf shrubs, mosses and lichens in urban forests. Differences in the soil microbial community structure were found between paths and untrampled areas and the effects of paths extended more than one meter from the paths. Paths supported approximately 25-30% higher microbial biomass with a transition zone of at least 1 m from the path edge. However, microbial activity per unit of biomass was lower on paths than in untrampled areas. Furthermore, microbial biomass and activity were 30-45% lower at the first 20 m into the forest fragments, due to low moisture content of humus near the edge. The decreased microbial activity detected at forest edges and paths implies decreased litter decomposition rates, and thus, a change in nutrient cycling. Changes in the decomposition and nutrient supply may in turn affect the diversity and function of plant communities in urban forests. Keywords: boreal forest vegetation, edge effects, phospholipid fatty acids, trampling, urban woodlands, wear
Resumo:
The traditional aim of community ecology has been to understand the origin and maintenance of species richness in local communities. Why certain species occur in one place but not in another, how ecologically apparently similar species use resources, what is the role of the regional species pool in affecting species composition in local communities, and so forth. Madagascar offers great opportunities to conduct such studies, since it is a very large island that has been isolated for tens of million of years. Madagascar has remarkable faunal and floral diversity and species level endemism reaches 100% in many groups of species. Madagascar is also exceptional for endemism at high taxonomic levels and for the skewed representation of many taxa in comparison with continental faunas. For example, native ungulates that are dominant large herbivorous mammals on the African continent are completely lacking in Madagascar. The largest native Malagasy herbivores, and the main dung producers for Malagasy dung beetles, are the endemic primates, lemurs. Cattle was introduced to Madagascar about 1,000 yrs ago and is today abundant and widespread. I have studied Malagasy dung beetle communities and the distributional patterns of species at several spatial scales and compared the results with comparable communities in other tropical areas. There are substantial differences in dung beetle communities in Madagascar and elsewhere in the tropics in terms of the life histories of the species, species ecological traits, local and regional species diversities, and the sizes of species geographical ranges. These differences are attributed to Madagascar s ancient isolation, large size, heterogeneous environment, skewed representation of the mammalian fauna, and recent though currently great human impact.
Resumo:
Life-history theory states that although natural selection would favour a maximisation of both reproductive output and life-span, such a combination can not be achieved in any living organism. According to life-history theory the reason for the fact that not all traits can be maximised simultaneously is that different traits compete with each other for resources. These relationships between traits that constrain the simultaneous evolution of two or more traits are called trade-offs. Therefore, during different life-stages an individual needs to optimise its allocation of resources to life-history components such as growth, reproduction and survival. Resource limitation acts on these traits and therefore investment in one trait, e.g. reproduction, reduces the resources available for investment in another trait, e.g. residual reproduction or survival. In this thesis I study how food resources during different stages of the breeding event affect reproductive decisions in the Ural owl (Strix uralensis) and the consequences of these decisions on parents and offspring. The Ural owl is a suitable study species for such studies in natural populations since they are long-lived, site-tenacious, and feed on voles. The vole populations in Fennoscandia fluctuate in three- to four-year cycles, which create a variable food environment for the Ural owls to cope with. The thesis gives new insight in reproductive costs and their consequences in natural animal populations with emphasis on underlying physiological mechanisms. I found that supplementary fed Ural owl parents invest supplemented food resources during breeding in own self-maintenance instead of allocating those resources to offspring growth. This investment in own maintenance instead of improving current reproduction had carry-over effects to the following year in terms of increased reproductive output. Therefore, I found evidence that reduced reproductive costs improves future reproductive performance. Furthermore, I found evidence for the underlying mechanism behind this carry-over effect of supplementary food on fecundity. The supplementary-fed parents reduced their feeding investment in the offspring compared to controls, which enabled the fed female parents to invest the surplus resources in parasite resistance. Fed female parents had lower blood parasite loads than control females and this effect lasted until the following year when also reproductive output was increased. Hence, increased investment in parasite resistance when resources are plentiful has the potential to mediate positive carry-over effects on future reproduction. I further found that this carry-over effect was only present when potentials for future reproduction were good. The thesis also provides new knowledge on resource limitation on maternal effects. I found that increased resources prior to egg laying improve the condition and health of Ural owl females and enable them to allocate more resources to reproduction than control females. These additional resources are not allocated to increase the number of offspring, but instead to improve the quality of each offspring. Fed Ural owl females increased the size of their eggs and allocated more health improving immunological components into the eggs. Furthermore, the increased egg size had long-lasting effects on offspring growth, as offspring from larger eggs were heavier at fledging. Limiting resources can have different short- and long-term consequences on reproductive decisions that affect both offspring number and quality. In long-lived organisms, such as the Ural owl, it appears to be beneficial in terms of fitness to invest in long breeding life-span instead of additional investment in current reproduction. In Ural owls, females can influence the phenotypic quality of the offspring by transferring additional resources to the eggs that can have long-lasting effects on growth.
Resumo:
This paper reports on a qualitative case study undertaken in a remote part of Queensland, Australia. While there is some modest agreement about the capacity of contemporary information technologies to overcome the problems of schooling in areas of extreme remoteness, generally, children educated in such contexts are considered to be disadvantaged. The experiential areas of the curriculum, which often require specific teaching expertise, present the greatest challenge to teachers, and of these, physical education is perhaps the most problematic. This research reports on a case study of three remote Queensland multi-age primary (elementary) schools that come together to form a community of practice to overcome the problems of teaching physical education in such difficult circumstances. Physical education is constructed in these contexts by blurring the school and community boundaries, by contextualizing the subject content to make it relevant, and by adjusting the school day to accommodate potential physical education experiences. Each community gathers its collective experience to ensure the widest possible experiences are made available for the children. In doing so, the children develop a range of competencies that enable seamless transition to boarding high schools.
Resumo:
Boreal peatlands represent a considerable portion of the global carbon (C) pool. Water-level drawdown (WLD) causes peatland drying and induces a vegetation change, which affects the decomposition of soil organic matter and the release of greenhouse gases (CO2 and CH4). The objective of this thesis was to study the microbial communities related to the C cycle and their response to WLD in two boreal peatlands. Both sampling depth and site type had a strong impact on all microbial communities. In general, bacteria dominated the deeper layers of the nutrient-rich fen and the wettest surfaces of the nutrient-poor bog sites, whereas fungi seemed more abundant in the drier surfaces of the bog. WLD clearly affected the microbial communities but the effect was dependent on site type. The fungal and methane-oxidizing bacteria (MOB) community composition changed at all sites but the actinobacterial community response was apparent only in the fen after WLD. Microbial communities became more similar among sites after long-term WLD. Litter quality had a large impact on community composition, whereas the effects of site type and WLD were relatively minor. The decomposition rate of fresh organic matter was influenced slightly by actinobacteria, but not at all by fungi. Field respiration measurements in the northern fen indicated that WLD accelerates the decomposition of soil organic matter. In addition, a correlation between activity and certain fungal sequences indicated that community composition affects the decomposition of older organic matter in deeper peat layers. WLD had a negative impact on CH4 oxidation, especially in the oligotrophic fen. Fungal sequences were matched to taxa capable of utilizing a broad range of substrates. Most of the actinobacterial sequences could not be matched to characterized taxa in reference databases. This thesis represents the first investigation of microbial communities and their response to WLD among a variety of boreal peatland habitats. The results indicate that microbial community responses to WLD are complex but dependent on peatland type, litter quality, depth, and variable among microbes.
Resumo:
Lead contamination in the environment is of particular concern, as it is a known toxin. Until recently, however, much less attention has been given to the local contamination caused by activities at shooting ranges compared to large-scale industrial contamination. In Finland, more than 500 tons of Pb is produced each year for shotgun ammunition. The contaminant threatens various organisms, ground water and the health of human populations. However, the forest at shooting ranges usually shows no visible sign of stress compared to nearby clean environments. The aboveground biota normally reflects the belowground ecosystem. Thus, the soil microbial communities appear to bear strong resistance to contamination, despite the influence of lead. The studies forming this thesis investigated a shooting range site at Hälvälä in Southern Finland, which is heavily contaminated by lead pellets. Previously it was experimentally shown that the growth of grasses and degradation of litter are retarded. Measurements of acute toxicity of the contaminated soil or soil extracts gave conflicting results, as enchytraeid worms used as toxicity reporters were strongly affected, while reporter bacteria showed no or very minor decreases in viability. Measurements using sensitive inducible luminescent reporter bacteria suggested that the bioavailability of lead in the soil is indeed low, and this notion was supported by the very low water extractability of the lead. Nevertheless, the frequency of lead-resistant cultivable bacteria was elevated based on the isolation of cultivable strains. The bacterial and fungal diversity in heavily lead contaminated shooting sectors were compared with those of pristine sections of the shooting range area. The bacterial 16S rRNA gene and fungal ITS rRNA gene were amplified, cloned and sequenced using total DNA extracted from the soil humus layer as the template. Altogether, 917 sequenced bacterial clones and 649 sequenced fungal clones revealed a high soil microbial diversity. No effect of lead contamination was found on bacterial richness or diversity, while fungal richness and diversity significantly differed between lead contaminated and clean control areas. However, even in the case of fungi, genera that were deemed sensitive were not totally absent from the contaminated area: only their relative frequency was significantly reduced. Some operational taxonomic units (OTUs) assigned to Basidiomycota were clearly affected, and were much rarer in the lead contaminated areas. The studies of this thesis surveyed EcM sporocarps, analyzed morphotyped EcM root tips by direct sequencing, and 454-pyrosequenced fungal communities in in-growth bags. A total of 32 EcM fungi that formed conspicuous sporocarps, 27 EcM fungal OTUs from 294 root tips, and 116 EcM fungal OTUs from a total of 8 194 ITS2 454 sequences were recorded. The ordination analyses by non-parametric multidimensional scaling (NMS) indicated that Pb enrichment induced a shift in the EcM community composition. This was visible as indicative trends in the sporocarp and root tip datasets, but explicitly clear in the communities observed in the in-growth bags. The compositional shift in the EcM community was mainly attributable to an increase in the frequencies of OTUs assigned to the genus Thelephora, and to a decrease in the OTUs assigned to Pseudotomentella, Suillus and Tylospora in Pb-contaminated areas when compared to the control. The enrichment of Thelephora in contaminated areas was also observed when examining the total fungal communities in soil using DNA cloning and sequencing technology. While the compositional shifts are clear, their functional consequences for the dominant trees or soil ecosystem remain undetermined. The results indicate that at the Hälvälä shooting range, lead influences the fungal communities but not the bacterial communities. The forest ecosystem shows apparent functional redundancy, since no significant effects were seen on forest trees. Recently, by means of 454 pyrosequencing , the amount of sequences in a single analysis run can be up to one million. It has been applied in microbial ecology studies to characterize microbial communities. The handling of sequence data with traditional programs is becoming difficult and exceedingly time consuming, and novel tools are needed to handle the vast amounts of data being generated. The field of microbial ecology has recently benefited from the availability of a number of tools for describing and comparing microbial communities using robust statistical methods. However, although these programs provide methods for rapid calculation, it has become necessary to make them more amenable to larger datasets and numbers of samples from pyrosequencing. As part of this thesis, a new program was developed, MuSSA (Multi-Sample Sequence Analyser), to handle sequence data from novel high-throughput sequencing approaches in microbial community analyses. The greatest advantage of the program is that large volumes of sequence data can be manipulated, and general OTU series with a frequency value can be calculated among a large number of samples.
Resumo:
Phytoplankton ecology and productivity is one of the main branches of contemporary oceanographic research. Research groups in this branch have increasingly started to utilise bio-optical applications. My main research objective was to critically investigate the advantages and deficiencies of the fast repetition rate (FRR) fluorometry for studies of productivity of phytoplankton, and the responses of phytoplankton towards varying environmental stress. Second, I aimed to clarify the applicability of the FRR system to the optical environment of the Baltic Sea. The FRR system offers a highly dynamic tool for studies of phytoplankton photophysiology and productivity both in the field and in a controlled environment. The FRR metrics obtain high-frequency in situ determinations of the light-acclimative and photosynthetic parameters of intact phytoplankton communities. The measurement protocol is relatively easy to use without phases requiring analytical determinations. The most notable application of the FRR system lies in its potential for making primary productivity (PP) estimations. However, the realisation of this scheme is not straightforward. The FRR-PP, based on the photosynthetic electron flow (PEF) rate, are linearly related to the photosynthetic gas exchange (fixation of 14C) PP only in environments where the photosynthesis is light-limited. If the light limitation is not present, as is usually the case in the near-surface layers of the water column, the two PP approaches will deviate. The prompt response of the PEF rate to the short-term variability in the natural light field makes the field comparisons between the PEF-PP and the 14C-PP difficult to interpret, because this variability is averaged out in the 14C-incubations. Furthermore, the FRR based PP models are tuned to closely follow the vertical pattern of the underwater irradiance. Due to the photoacclimational plasticity of phytoplankton, this easily leads to overestimates of water column PP, if precautionary measures are not taken. Natural phytoplankton is subject to broad-waveband light. Active non-spectral bio-optical instruments, like the FRR fluorometer, emit light in a relatively narrow waveband, which by its nature does not represent the in situ light field. Thus, the spectrally-dependent parameters provided by the FRR system need to be spectrally scaled to the natural light field of the Baltic Sea. In general, the requirement of spectral scaling in the water bodies under terrestrial impact concerns all light-adaptive parameters provided by any active non-spectral bio-optical technique. The FRR system can be adopted to studies of all phytoplankton that possess efficient light harvesting in the waveband matching the bluish FRR excitation. Although these taxa cover the large bulk of all the phytoplankton taxa, one exception with a pronounced ecological significance is found in the Baltic Sea. The FRR system cannot be used to monitor the photophysiology of the cyanobacterial taxa harvesting light in the yellow-red waveband. These taxa include the ecologically-significant bloom-forming cyanobacterial taxa in the Baltic Sea.
Resumo:
Growing human populations and increasing exploitation of natural resources threaten nature all over the world. Tropical countries are especially vulnerable to human impact because of the high number of species, most of these endemic and still unknown. Madagascar is one of the centers of high biodiversity and renowned for its unique species. However, during the last centuries many endemic species have gone extinct and more are endangered. Because of high natural values, Madagascar is one of the global conservation priorities. The establishment of Ranomafana National Park (RNP) was intended to preserve the unique nature of Madagascar. Containing several endemic and threatened species, Ranomafana has been selected as one of UNESCO’s World Natural Heritage sites. However, due to strong human pressures the region immediately surroundings the protected area has severely degraded. Aims of this thesis were to inventory carabid fauna in RNP and evaluate their use as indicators of the environmental change. Carabid beetles were collected from protected area (secondary and primary forests) and from its degraded surrounding area. Collecting was mostly conducted by hand during years 2000-2005. Species compositions between the protected area and its surroundings were compared, and species habitat preferences and seasonal variations were studied. In total, 4498 individuals representing 127 carabid species (of which 38 are new species) were collected. Species compositions within and outside of the protected area were markedly different. Most of the species preferred forest as their primary habitat and were mainly collected from trees and bushes. Their value as indicators is based on their different habitat requirements and sensitivity to environmental variables. Some of the species were found only in the protected forest, some occupied also the degraded forests and some preferred open areas. Carabid fauna is very species rich in Ranomafana and there are still many species to be found. Most of the species are arboreal and probably cannot survive in the deforested areas outside the park. This is very likely also the case for other species. Establishment and continued protection of RNP is probably the only way to conserve this globally important area. However, new occupations and land use methods are urgently needed by the local people for improving their own lives while maintaining the forest intact.
Resumo:
This work focuses on the factors affecting species richness, abundance and species composition of butterflies and moths in Finnish semi-natural grasslands, with a special interest in the effects of grazing management. In addition, an aim was set at evaluating the effectiveness of the support for livestock grazing in semi-natural grasslands, which is included in the Finnish agri-environment scheme. In the first field study, butterfly and moth communities in resumed semi-natural pastures were com-pared to old, annually grazed and abandoned previous pastures. Butterfly and moth species compo-sition in restored pastures resembled the compositions observed in old pastures after circa five years of resumed cattle grazing, but diversity of butterflies and moths in resumed pastures remained at a lower level compared with old pastures. None of the butterfly and moth species typical of old pas-tures had become more abundant in restored pastures compared with abandoned pastures. There-fore, it appears that restoration of butterfly and moth communities inhabiting semi-natural grass-lands requires a longer time that was available for monitoring in this study. In the second study, it was shown that local habitat quality has the largest impact on the occurrence and abundance of butterflies and moths compared to the effects of grassland patch area and connec-tivity of the regional grassland network. This emphasizes the importance of current and historical management of semi-natural grasslands on butterfly and moth communities. A positive effect of habitat connectivity was observed on total abundance of the declining butterflies and moths, sug-gesting that these species have strongest populations in well-connected habitat networks. Highest species richness and peak abundance of most individual species of butterflies and moths were generally observed in taller grassland vegetation compared with vascular plants, suggesting a preference towards less intensive management in insects. These differences between plants and their insect herbivores may be understood in the light of both (1) the higher structural diversity of tall vegetation and (2) weaker tolerance of disturbances by herbivorous insects due to their higher trophic level compared to plants. The ecological requirements of all species and species groups inhabiting semi-natural grasslands are probably never met at single restricted sites. Therefore, regional implementation of management to create differently managed areas is imperative for the conservation of different species and species groups dependent on semi-natural grasslands. With limited resources it might be reasonable to focus much of the management efforts in the densest networks of suitable habitat to minimise the risk of extinction of the declining species.
Resumo:
Individuals in distress emit audible vocalizations to either warn or inform conspecifics. The Indian short-nosed fruit bat, Cynopterus sphinx, emits distress calls soon after becoming entangled in mist nets, which appear to attract conspecifics. Phase I of these distress calls is longer and louder, and includes a secondary peak, compared to phase II. Activity-dependent expression of egr-1 was examined in free-ranging C. sphinx following the emissions and responses to a distress call. We found that the level of expression of egr-1 was higher in bats that emitted a distress call, in adults that responded, and in pups than in silent bats. Up-regulated cDNA was amplified to identify the target gene (TOE1) of the protein Egr-1. The observed expression pattern Toe1 was similar to that of egr-1. These findings suggest that the neuronal activity related to recognition of a distress call and an auditory feedback mechanism induces the expression of Egr-1. Co-expression of egr-1 with Toe1 may play a role in initial triggering of the genetic mechanism that could be involved in the consolidation or stabilization of distress call memories.
Resumo:
One-dimensional nanomaterials have short Li+ diffusion paths and promising structural stability, which results in a long cycle life during Li+ insertion and extraction processes in lithium rechargeable batteries. In this study, we fabricated one-dimensional spinel Li 4Ti5O12 (LTO) nanofibers using an electrospinning technique and studied the Zr4+ doping effect on the lattice, electronic structure, and resultant electrochemical properties of Li-ion batteries (LIBs). Accommodating a small fraction of Zr4+ ions in the Ti4+ sites of the LTO structure gave rise to enhanced LIB performance, which was due to structural distortion through an increase in the average lattice constant and thereby enlarged Li+ diffusion paths rather than changes to the electronic structure. Insulating ZrO2 nanoparticles present between the LTO grains due to the low Zr4+ solubility had a negative effect on the Li+ extraction capacity, however. These results could provide key design elements for LTO anodes based on atomic level insights that can pave the way to an optimal protocol to achieve particular functionalities. Distorted lattice: Zr4+ is doped into a 1 D spinel Li4Ti5O12 (LTO) nanostructure and the resulting electrochemical properties are explored through a combined theoretical and experimental investigation. The improved electrochemical performance resulting from incorporation of Zr4+ in the LTO is due to lattice distortion and, thereby, enlarged Li+ diffusion paths rather than to a change in the electronic structure.