979 resultados para microRNA Target Prediction
Resumo:
Within the quasimolecular (MO) kinematic dipole model we predict a strong dependence of the anisotropy of the MO radiation on the orientation of the heavy ion scattering plane relative to the direction of the photon detection plane.
Resumo:
Die thermische Verarbeitung von Lebensmitteln beeinflusst deren Qualität und ernährungsphysiologischen Eigenschaften. Im Haushalt ist die Überwachung der Temperatur innerhalb des Lebensmittels sehr schwierig. Zudem ist das Wissen über optimale Temperatur- und Zeitparameter für die verschiedenen Speisen oft unzureichend. Die optimale Steuerung der thermischen Zubereitung ist maßgeblich abhängig von der Art des Lebensmittels und der äußeren und inneren Temperatureinwirkung während des Garvorgangs. Das Ziel der Arbeiten war die Entwicklung eines automatischen Backofens, der in der Lage ist, die Art des Lebensmittels zu erkennen und die Temperatur im Inneren des Lebensmittels während des Backens zu errechnen. Die für die Temperaturberechnung benötigten Daten wurden mit mehreren Sensoren erfasst. Hierzu kam ein Infrarotthermometer, ein Infrarotabstandssensor, eine Kamera, ein Temperatursensor und ein Lambdasonde innerhalb des Ofens zum Einsatz. Ferner wurden eine Wägezelle, ein Strom- sowie Spannungs-Sensor und ein Temperatursensor außerhalb des Ofens genutzt. Die während der Aufheizphase aufgenommen Datensätze ermöglichten das Training mehrerer künstlicher neuronaler Netze, die die verschiedenen Lebensmittel in die entsprechenden Kategorien einordnen konnten, um so das optimale Backprogram auszuwählen. Zur Abschätzung der thermische Diffusivität der Nahrung, die von der Zusammensetzung (Kohlenhydrate, Fett, Protein, Wasser) abhängt, wurden mehrere künstliche neuronale Netze trainiert. Mit Ausnahme des Fettanteils der Lebensmittel konnten alle Komponenten durch verschiedene KNNs mit einem Maximum von 8 versteckten Neuronen ausreichend genau abgeschätzt werden um auf deren Grundlage die Temperatur im inneren des Lebensmittels zu berechnen. Die durchgeführte Arbeit zeigt, dass mit Hilfe verschiedenster Sensoren zur direkten beziehungsweise indirekten Messung der äußeren Eigenschaften der Lebensmittel sowie KNNs für die Kategorisierung und Abschätzung der Lebensmittelzusammensetzung die automatische Erkennung und Berechnung der inneren Temperatur von verschiedensten Lebensmitteln möglich ist.
Resumo:
Mit Hilfe der Vorhersage von Kontexten können z. B. Dienste innerhalb einer ubiquitären Umgebung proaktiv an die Bedürfnisse der Nutzer angepasst werden. Aus diesem Grund hat die Kontextvorhersage einen signifikanten Stellenwert innerhalb des ’ubiquitous computing’. Nach unserem besten Wissen, verwenden gängige Ansätze in der Kontextvorhersage ausschließlich die Kontexthistorie des Nutzers als Datenbasis, dessen Kontexte vorhersagt werden sollen. Im Falle, dass ein Nutzer unerwartet seine gewohnte Verhaltensweise ändert, enthält die Kontexthistorie des Nutzers keine geeigneten Informationen, um eine zuverlässige Kontextvorhersage zu gewährleisten. Daraus folgt, dass Vorhersageansätze, die ausschließlich die Kontexthistorie des Nutzers verwenden, dessen Kontexte vorhergesagt werden sollen, fehlschlagen könnten. Um die Lücke der fehlenden Kontextinformationen in der Kontexthistorie des Nutzers zu schließen, führen wir den Ansatz zur kollaborativen Kontextvorhersage (CCP) ein. Dabei nutzt CCP bestehende direkte und indirekte Relationen, die zwischen den Kontexthistorien der verschiedenen Nutzer existieren können, aus. CCP basiert auf der Singulärwertzerlegung höherer Ordnung, die bereits erfolgreich in bestehenden Empfehlungssystemen eingesetzt wurde. Um Aussagen über die Vorhersagegenauigkeit des CCP Ansatzes treffen zu können, wird dieser in drei verschiedenen Experimenten evaluiert. Die erzielten Vorhersagegenauigkeiten werden mit denen von drei bekannten Kontextvorhersageansätzen, dem ’Alignment’ Ansatz, dem ’StatePredictor’ und dem ’ActiveLeZi’ Vorhersageansatz, verglichen. In allen drei Experimenten werden als Evaluationsbasis kollaborative Datensätze verwendet. Anschließend wird der CCP Ansatz auf einen realen kollaborativen Anwendungsfall, den proaktiven Schutz von Fußgängern, angewendet. Dabei werden durch die Verwendung der kollaborativen Kontextvorhersage Fußgänger frühzeitig erkannt, die potentiell Gefahr laufen, mit einem sich nähernden Auto zu kollidieren. Als kollaborative Datenbasis werden reale Bewegungskontexte der Fußgänger verwendet. Die Bewegungskontexte werden mittels Smartphones, welche die Fußgänger in ihrer Hosentasche tragen, gesammelt. Aus dem Grund, dass Kontextvorhersageansätze in erster Linie personenbezogene Kontexte wie z.B. Standortdaten oder Verhaltensmuster der Nutzer als Datenbasis zur Vorhersage verwenden, werden rechtliche Evaluationskriterien aus dem Recht des Nutzers auf informationelle Selbstbestimmung abgeleitet. Basierend auf den abgeleiteten Evaluationskriterien, werden der CCP Ansatz und weitere bekannte kontextvorhersagende Ansätze bezüglich ihrer Rechtsverträglichkeit untersucht. Die Evaluationsergebnisse zeigen die rechtliche Kompatibilität der untersuchten Vorhersageansätze bezüglich des Rechtes des Nutzers auf informationelle Selbstbestimmung auf. Zum Schluss wird in der Dissertation ein Ansatz für die verteilte und kollaborative Vorhersage von Kontexten vorgestellt. Mit Hilfe des Ansatzes wird eine Möglichkeit aufgezeigt, um den identifizierten rechtlichen Probleme, die bei der Vorhersage von Kontexten und besonders bei der kollaborativen Vorhersage von Kontexten, entgegenzuwirken.
Resumo:
The ongoing depletion of the coastal aquifer in the Gaza strip due to groundwater overexploitation has led to the process of seawater intrusion, which is continually becoming a serious problem in Gaza, as the seawater has further invaded into many sections along the coastal shoreline. As a first step to get a hold on the problem, the artificial neural network (ANN)-model has been applied as a new approach and an attractive tool to study and predict groundwater levels without applying physically based hydrologic parameters, and also for the purpose to improve the understanding of complex groundwater systems and which is able to show the effects of hydrologic, meteorological and anthropogenic impacts on the groundwater conditions. Prediction of the future behaviour of the seawater intrusion process in the Gaza aquifer is thus of crucial importance to safeguard the already scarce groundwater resources in the region. In this study the coupled three-dimensional groundwater flow and density-dependent solute transport model SEAWAT, as implemented in Visual MODFLOW, is applied to the Gaza coastal aquifer system to simulate the location and the dynamics of the saltwater–freshwater interface in the aquifer in the time period 2000-2010. A very good agreement between simulated and observed TDS salinities with a correlation coefficient of 0.902 and 0.883 for both steady-state and transient calibration is obtained. After successful calibration of the solute transport model, simulation of future management scenarios for the Gaza aquifer have been carried out, in order to get a more comprehensive view of the effects of the artificial recharge planned in the Gaza strip for some time on forestall, or even to remedy, the presently existing adverse aquifer conditions, namely, low groundwater heads and high salinity by the end of the target simulation period, year 2040. To that avail, numerous management scenarios schemes are examined to maintain the ground water system and to control the salinity distributions within the target period 2011-2040. In the first, pessimistic scenario, it is assumed that pumping from the aquifer continues to increase in the near future to meet the rising water demand, and that there is not further recharge to the aquifer than what is provided by natural precipitation. The second, optimistic scenario assumes that treated surficial wastewater can be used as a source of additional artificial recharge to the aquifer which, in principle, should not only lead to an increased sustainable yield of the latter, but could, in the best of all cases, revert even some of the adverse present-day conditions in the aquifer, i.e., seawater intrusion. This scenario has been done with three different cases which differ by the locations and the extensions of the injection-fields for the treated wastewater. The results obtained with the first (do-nothing) scenario indicate that there will be ongoing negative impacts on the aquifer, such as a higher propensity for strong seawater intrusion into the Gaza aquifer. This scenario illustrates that, compared with 2010 situation of the baseline model, at the end of simulation period, year 2040, the amount of saltwater intrusion into the coastal aquifer will be increased by about 35 %, whereas the salinity will be increased by 34 %. In contrast, all three cases of the second (artificial recharge) scenario group can partly revert the present seawater intrusion. From the water budget point of view, compared with the first (do nothing) scenario, for year 2040, the water added to the aquifer by artificial recharge will reduces the amount of water entering the aquifer by seawater intrusion by 81, 77and 72 %, for the three recharge cases, respectively. Meanwhile, the salinity in the Gaza aquifer will be decreased by 15, 32 and 26% for the three cases, respectively.
Resumo:
The research of this thesis dissertation covers developments and applications of short-and long-term climate predictions. The short-term prediction emphasizes monthly and seasonal climate, i.e. forecasting from up to the next month over a season to up to a year or so. The long-term predictions pertain to the analysis of inter-annual- and decadal climate variations over the whole 21st century. These two climate prediction methods are validated and applied in the study area, namely, Khlong Yai (KY) water basin located in the eastern seaboard of Thailand which is a major industrial zone of the country and which has been suffering from severe drought and water shortage in recent years. Since water resources are essential for the further industrial development in this region, a thorough analysis of the potential climate change with its subsequent impact on the water supply in the area is at the heart of this thesis research. The short-term forecast of the next-season climate, such as temperatures and rainfall, offers a potential general guideline for water management and reservoir operation. To that avail, statistical models based on autoregressive techniques, i.e., AR-, ARIMA- and ARIMAex-, which includes additional external regressors, and multiple linear regression- (MLR) models, are developed and applied in the study region. Teleconnections between ocean states and the local climate are investigated and used as extra external predictors in the ARIMAex- and the MLR-model and shown to enhance the accuracy of the short-term predictions significantly. However, as the ocean state – local climate teleconnective relationships provide only a one- to four-month ahead lead time, the ocean state indices can support only a one-season-ahead forecast. Hence, GCM- climate predictors are also suggested as an additional predictor-set for a more reliable and somewhat longer short-term forecast. For the preparation of “pre-warning” information for up-coming possible future climate change with potential adverse hydrological impacts in the study region, the long-term climate prediction methodology is applied. The latter is based on the downscaling of climate predictions from several single- and multi-domain GCMs, using the two well-known downscaling methods SDSM and LARS-WG and a newly developed MLR-downscaling technique that allows the incorporation of a multitude of monthly or daily climate predictors from one- or several (multi-domain) parent GCMs. The numerous downscaling experiments indicate that the MLR- method is more accurate than SDSM and LARS-WG in predicting the recent past 20th-century (1971-2000) long-term monthly climate in the region. The MLR-model is, consequently, then employed to downscale 21st-century GCM- climate predictions under SRES-scenarios A1B, A2 and B1. However, since the hydrological watershed model requires daily-scale climate input data, a new stochastic daily climate generator is developed to rescale monthly observed or predicted climate series to daily series, while adhering to the statistical and geospatial distributional attributes of observed (past) daily climate series in the calibration phase. Employing this daily climate generator, 30 realizations of future daily climate series from downscaled monthly GCM-climate predictor sets are produced and used as input in the SWAT- distributed watershed model, to simulate future streamflow and other hydrological water budget components in the study region in a multi-realization manner. In addition to a general examination of the future changes of the hydrological regime in the KY-basin, potential future changes of the water budgets of three main reservoirs in the basin are analysed, as these are a major source of water supply in the study region. The results of the long-term 21st-century downscaled climate predictions provide evidence that, compared with the past 20th-reference period, the future climate in the study area will be more extreme, particularly, for SRES A1B. Thus, the temperatures will be higher and exhibit larger fluctuations. Although the future intensity of the rainfall is nearly constant, its spatial distribution across the region is partially changing. There is further evidence that the sequential rainfall occurrence will be decreased, so that short periods of high intensities will be followed by longer dry spells. This change in the sequential rainfall pattern will also lead to seasonal reductions of the streamflow and seasonal changes (decreases) of the water storage in the reservoirs. In any case, these predicted future climate changes with their hydrological impacts should encourage water planner and policy makers to develop adaptation strategies to properly handle the future water supply in this area, following the guidelines suggested in this study.
Resumo:
There has been recent interest in using temporal difference learning methods to attack problems of prediction and control. While these algorithms have been brought to bear on many problems, they remain poorly understood. It is the purpose of this thesis to further explore these algorithms, presenting a framework for viewing them and raising a number of practical issues and exploring those issues in the context of several case studies. This includes applying the TD(lambda) algorithm to: 1) learning to play tic-tac-toe from the outcome of self-play and of play against a perfectly-playing opponent and 2) learning simple one-dimensional segmentation tasks.
Resumo:
Existing fuel taxes play a major role in determining the welfare effects of exempting the transportation sector from measures to control greenhouse gases. To study this phenomenon we modify the MIT Emissions Prediction and Policy Analysis (EPPA) model to disaggregate the household transportation sector. This improvement requires an extension of the GTAP data set that underlies the model. The revised and extended facility is then used to compare economic costs of cap-and-trade systems differentiated by sector, focusing on two regions: the USA where the fuel taxes are low, and Europe where the fuel taxes are high. We find that the interplay between carbon policies and pre-existing taxes leads to different results in these regions: in the USA exemption of transport from such a system would increase the welfare cost of achieving a national emissions target, while in Europe such exemptions will correct pre-existing distortions and reduce the cost.
Resumo:
We contribute a quantitative and systematic model to capture etch non-uniformity in deep reactive ion etch of microelectromechanical systems (MEMS) devices. Deep reactive ion etch is commonly used in MEMS fabrication where high-aspect ratio features are to be produced in silicon. It is typical for many supposedly identical devices, perhaps of diameter 10 mm, to be etched simultaneously into one silicon wafer of diameter 150 mm. Etch non-uniformity depends on uneven distributions of ion and neutral species at the wafer level, and on local consumption of those species at the device, or die, level. An ion–neutral synergism model is constructed from data obtained from etching several layouts of differing pattern opening densities. Such a model is used to predict wafer-level variation with an r.m.s. error below 3%. This model is combined with a die-level model, which we have reported previously, on a MEMS layout. The two-level model is shown to enable prediction of both within-die and wafer-scale etch rate variation for arbitrary wafer loadings.
Resumo:
Resumen tomado de la publicaci??n. Resumen tambi??n en ingl??s
Resumo:
Proposes a behavior-based scheme for high-level control of autonomous underwater vehicles (AUVs). Two main characteristics can be highlighted in the control scheme. Behavior coordination is done through a hybrid methodology, which takes in advantages of the robustness and modularity in competitive approaches, as well as optimized trajectories
Resumo:
Considering the difficulty in the insulin dosage selection and the problem of hyper- and hypoglycaemia episodes in type 1 diabetes, dosage-aid systems appear as tremendously helpful for these patients. A model-based approach to this problem must unavoidably consider uncertainty sources such as the large intra-patient variability and food intake. This work addresses the prediction of glycaemia for a given insulin therapy face to parametric and input uncertainty, by means of modal interval analysis. As result, a band containing all possible glucose excursions suffered by the patient for the given uncertainty is obtained. From it, a safer prediction of possible hyper- and hypoglycaemia episodes can be calculated
Resumo:
The use of music in television advertising to successfully target the audience. A John Lewis case study.