955 resultados para Large interactive touch display walls
Resumo:
Haptices and haptemes: A case study of developmental process in touch-based communication of acquired deafblind people This research is the first systematic, longitudinal process and development description of communication using touch and body with an acquired deafblind person. The research consists of observational and analysed written and video materials mainly from two informants´ experiences during period of 14 years. The research describes the adaptation of Social-Haptic methods between a couple, and other informants´ experiences, which have been collated from biographies and through giving national and international courses. When the hearing and sight deteriorates due to having an acquired deafblind condition, communication consists of multi-systematic and adaptive methods. A person`s expressive language, spoken or Sign Language, usually remains unchanged, but the methods of receiving information could change many times during a person s lifetime. Haptices are made from haptemes that determines which regulations are analysed. When defining haptemes the definition, classification and varied meanings of touch were discovered. Haptices include sharing a personal body space, meaning of touch-contact, context and using different communication channels. Communication distances are classified as exact distance, estimated distance and touch distance. Physical distance can be termed as very long, long, medium or very close. Social body space includes the body areas involved in sending and receiving haptices and applying different types of contacts. One or two hands can produce messages by using different hand shapes and orientations. This research classifies how the body can be identified into different areas such as body orientation, varied body postures, body position levels, social actions and which side of the body is used. Spatial body space includes environmental and situational elements. Haptemes of movements are recognised as the direction of movements, change of directions on the body, directions between people, pressure, speed, frequency, size, length, duration, pause, change of rhythm, shape, macro and micro movements. Haptices share multidimensional meanings and emotions. Research describes haptices in different situations enhancing sensory information and functioning also as an independent language. Haptices includes social-haptic confirmation system, social quick messages, body drawing, contact to the people and the environment, guiding and sharing art experiences through movements. Five stages of emotional differentiation were identified as very light, light, medium, heavy and very heavy touch. Haptices give the possibility to share different art, hobby and game experiences. A new communication system development based on the analysis of the research data is classified into different phases. These are experimental initiation, social deconstruction, developing the description of Social-Haptic communication and generalisation of the theory as well as finding and conceptualising the haptices and haptemes. The use and description of haptices is a social innovation, which illustrates the adaptive function of the body and perceptual senses that can be taught to a third party. Keywords: deafblindness, hapteme, haptic, haptices, movement, social-haptic communication, social-haptic confirmation system, tactile, touch
Resumo:
Through this study I aim to portray connections between home and school through the patterns of thought and action shared in everyday life in a certain community. My observations are primarily based upon interviews, writings and artwork by people from home (N=32) and school (N=13) contexts. Through the stories told, I depict the characters and characteristic features of the home-school interaction by generations. According to the material, in the school days of the grandparents the focus was on discipline and order. For the parents, the focus had shifted towards knowledge, while for the pupils today, the focus lies on evaluation, through which the upbringing of the child is steered towards favourable outcomes. Teachers and those people at home hold partially different understandings of home-school interaction, both of its manifested forms and potentials. The forms of contact in use today are largely seen as one-sided. Yearning for openness and regularity is shared by both sides, yet understood differently. Common causes for failure are said to lie in plain human difficulties in communication and social interaction, but deeply rooted traditions regarding forms of contact also cast a shadow on the route to successful co-operation. This study started around the idea, that home-school interaction should be steered towards the ex-change of constructive ideas between both the home and school environments. Combining the dif-ferent views gives to something to build upon. To test this idea, I drafted a practice period, which was implemented in a small pre-school environment in the fall of 1997. My focus of interest in this project was on the handling of ordinary life information in the schools. So I combined individual views, patterns of knowledge and understanding of the world into the process of teaching. Works of art and writings by the informants worked as tools for information processing and as practical forms of building home-school interaction. Experiences from the pre-school environ-ment were later on echoed in constructing home-school interaction in five other schools. In both these projects, the teaching in the school was based on stories, thoughts and performances put to-gether by the parents, grandparents and children at home. During these processes, the material used in this study, consisting of artwork, writings and interviews (N=501), was collected. The data shows that information originating from the home environments was both a motivating and interesting addition to the teaching. There even was a sense of pride when assessing the seeds of knowledge from one’s own roots. In most cases and subjects, the homegrown information content was seamlessly connected to the functions of school and the curriculum. This project initiated thought processes between pupils and teachers, adults, children and parents, teachers and parents, and also between generations. It appeared that many of the subjects covered had not been raised before between the various participant groups. I have a special interest here in visual expression and its various contextual meanings. There art material portrays how content matter and characteristic features of the adult and parent contexts reflect in the works of the children. Another clearly noticeable factor in the art material is the impact of time-related traditions and functions on the means of visual expression. Comparing the visual material to the written material reveals variances of meaning and possibilities between these forms of expression. The visual material appears to be related especially to portraying objects, action and usage. Processing through that making of images was noted to bring back memories of concrete structures, details and also emotions. This process offered the child an intensive social connection with the adults. In some cases, with children and adults alike, this project brought forth an ongoing relation to visual expression. During this study I end up changing the concept to ‘home-school collaboration’. This widely used concept guides and outlines the interaction between schools and homes. In order to broaden the field of possibilities, I choose to use the concept ‘school-home interconnection’. This concept forms better grounds for forming varying impressions and practices when building interactive contexts. This concept places the responsibility of bridging the connection-gap in the schools. Through the experiences and innovations of thought gained from these projects, I form a model of pedagogy that embraces the idea of school-home interconnection and builds on the various impres-sions and expressions contained in it. In this model, school makes use of the experiences, thoughts and conceptions from the home environment. Various forms of expression are used to portray and process this information. This joint evaluation and observation evolves thought patterns both in school and at home. Keywords: percieving, visuality, visual culture, art and text, visual expression, art education, growth in interaction, home-school collaboration, school-home interconnection, school-home interaction model.
Resumo:
This cross-sectional study analyzed psychological well-being at school using the Self-Determination theory as a theoretical frame-work. The study explored basic psychological needs fulfillment (BPNS), academic (SRQ-A), prosocial self-regulation (SRQ-P) and motivation, and their relationship with achievement in general, special and selective education (N=786, 444 boys, 345 girls, mean age 12 yrs 8 mths). Motivation starts behavior which becomes guided by self-regulation. The perceived locus of control (PLOC) affects how self-determined this behavior will be; in other words, to what extent it is autonomously regulated. In order learn and thus to be able to accept external goals, a student has to feel emotionally safe and have sufficient ego-flexibility—all of which builds on satisfied psychological needs. In this study those conditions were explored. In addition to traditional methods Self-organizing maps (SOM), was used in order to cluster the students according to their well-being, self-regulation, motivation and achievement scores. The main impacts of this research were: a presentation of the theory based alternative of studying psychological well-being at school and usage of both the variable and person-oriented approach. In this Finnish sample the results showed that the majority of students felt well, but the well-being varied by group. Overall about for 11–15% the basic needs were deprived depending on the educational group. Age and educational group were the most effective factors; gender was important in relation to prosocial identified behavior. Although the person-oriented SOM-approach, was in a large extent confirming what was no-ticed by using comparison of the variables: the SEN groups had lower levels of basic needs fulfillment and less autonomous self-regulation, interesting deviations of that rule appeared. Some of the SEL- and GEN-group members ended up in the more unfavorable SOM-clusters, and not all SEN-group members belonged to the poorest clusters (although not to the best either). This evidence refines the well-being and self-regulation picture, and may re-direct intervention plans, and turn our focus also on students who might otherwise remain unnoticed. On the other hand, these results imply simultaneously that in special education groups the average is not the whole truth. On the basis of theoretical and empirical considerations an intervention model was sug-gested. The aim of the model was to shift amotivation or external motivation in a more intrinsic direction. According to the theoretical and empirical evidence this can be achieved first by studying the self-concept a student has, and then trying to affect both inner and environmental factors—including a consideration of the basic psychological needs. Keywords: academic self-regulation, prosocial self-regulation, basic psychological needs, moti-vation, achievement
Resumo:
The main focus of this research was to describe the educational purpose of Christian schools within their operation culture. The Christian schools founded in Finland can be seen as part of a greater movement in Europe. In this research the dialogue and encounter in the educational scheme of Finnish Christian schools were examined by asking three research questions: 1. What is the nature of the dialogue in education in Finnish Christian schools? 2. How do the teachers describe themselves as educators? 3. What are the special characteristics in the operation culture of a Christian school? The educational relationship was regarded as fundamental and in the background reflected the absolute value of each student. Communication skills were viewed as essential in the building of relationships, which also included emotion communication skills as a broader view. The teachers expressed their comprehension of the meaning of the dialogue in the building of a relationship with practical examples. Students learned to understand one another's experiences by discussion and listening to one another. The values that created a connection were mutual appreciation, honesty, taking the other one into account, and the ability for empathy. Caring was regarded as a relationship between people, as well as a genuine mutual encounter, in which all parties would listen to one another and be heard by others. The respondents thought that individual attention and time were the keys to reaching well-being and an encounter. Students' commitment to the community was supported by mutual agreements, identifying with the common world, and encounters. The appearance of Christian love agape was named as the basis for an educational relationship. The answers emphasised shared everyday life at school. According to the teachers, the willingness for personal growth enabled encounters, although growth as such was often regarded as difficult. Cognitive emphasising and emotional experiencing from a dynamic perspective, were the means by which students' ethical understanding was comprehended. The teachers named three key factors to create a confidential relationship: a respectful attitude, courage, and genuineness. Within the school operational environment, a sense of community was emphasised, in which each student was taken into account individually. The active role of parents was an essential part of the school culture. The administration of the schools appeared committed. The additional pressure in school work came from efforts to ensure the official status of the school, as well as the large amount of administrative work involved in a private school. According to the research data, there was no evidence to support any elitism that is often associated with private schools.
Resumo:
The aim of this thesis was to study what kind of home-made menstrual pads were used in the early 20th century in Finland, how the home-made pads were made and which techniques and materials were used. The use and taking care of menstrual pads were also explored. The history of menstrual pads has been studied in Sweden, Germany and United States but none of those studies has concentrated on home-made pads. Instead, there are many studies about womanhood and menstruation. In many studies home-made menstrual pads are only briefly mentioned. Menstrual pads were not commonly used in Finland at the beginning of the 20th century, but already in the 1940s the use of menstrual pads had become common in every stratum of society. Home-made menstrual pads were used even until the 1960s. In Finland, factory-made disposable menstrual pads became common only in the 1930s and they were only slowly accepted. The study material consisted of nine interviews, three archival inquiries, health care guidebooks from 1893 to 1943 and authentic menstrual pads, menstrual belts and other objects related to them. The interviewed women were born between 1915 and 1939. The narrative approach was used in the study and it also guided the analysis. The interview and archival data were studied according to the basic rules of oral history studies. Literature consisted of publications from several disciplines. The extensive primary material played the most important role in this study. The reconstructions of the menstrual pads were made according to the interviewed women s advice. In Finland there were innumerable variations of home-made menstrual pads. The pads were most commonly crocheted and knitted either by hand or by knitting machine. Pads were also sewn of cloth, old bed linen or old underwear. The menstrual pads were self-made or made by a female relative. Word of mouth was important in spreading information on how to make pads, because there were hardly any instructions available. The biggest pads were 54 cm long and 13 cm wide. The most widely used pad model was a rectangle, which had triangle-shaped ends with a buttonhole or a loop. The pad was attached to the menstrual belt or to the buttons of the suspender belt. Knitted and crocheted pads had one, two or three layers. In sewn pads, there could be even more layers. Cellulose wadding or pieces of cloth could be placed inside the pad to increase the absorption ability. The experiences of the comfort of self-made pads varied. The crocheted and sewn pads were found chafing, knitted ones were found soft and comfortable. The menstrual pads were laborious to wash and boil in lye water. Therefore disposable pads made everyday life easier. The home-made menstrual pads were part of a unique tradition of handicrafts and folk culture. Hand-made pads were one of the most common handicraft products and were a part of every woman s life. Even so, the menstrual pads were unnoticeable. The large number of variations was probably caused by the silence around menstrual topics and by the lack of instructions for making pads. Variations are also explained by the uniqueness of every handicraft product. In Finland the home-made pads were used until relatively recent times. This was caused by the conditions of wartime and the following years and the rarity of commercial pads. Furthermore, until the late 20th century Finland was an agricultural society where all innovations spread slowly. Home-made menstrual pad was a secret handicraft of women and every woman needed to know how to make it by herself.
Resumo:
Nuclear hormone receptors, such as the ecdysone receptor, often display a large amount of induced fit to ligands. The size and shape of the binding pocket in the EcR subunit changes markedly on ligand binding, making modelling methods such as docking extremely challenging. It is, however, possible to generate excellent 3D QSAR models for a given type of ligand, suggesting that the receptor adopts a relatively restricted number of binding site configurations or [`]attractors'. We describe the synthesis, in vitro binding and selected in vivo toxicity data for [gamma]-methylene [gamma]-lactams, a new class of high-affinity ligands for ecdysone receptors from Bovicola ovis (Phthiraptera) and Lucilia cuprina (Diptera). The results of a 3D QSAR study of the binding of methylene lactams to recombinant ecdysone receptor protein suggest that this class of ligands is indeed recognized by a single conformation of the EcR binding pocket.
Resumo:
We present a detailed direct numerical simulation (DNS) of the two-dimensional Navier-Stokes equation with the incompressibility constraint and air-drag-induced Ekman friction; our DNS has been designed to investigate the combined effects of walls and such a friction on turbulence in forced thin films. We concentrate on the forward-cascade regime and show how to extract the isotropic parts of velocity and vorticity structure functions and hence the ratios of multiscaling exponents. We find that velocity structure functions display simple scaling, whereas their vorticity counterparts show multiscaling, and the probability distribution function of the Weiss parameter 3, which distinguishes between regions with centers and saddles, is in quantitative agreement with experiments.
Resumo:
Parkinson’s disease (PD) is the second most common neurodegenerative disease among the elderly. Its etiology is unknown and no disease-modifying drugs are available. Thus, more information concerning its pathogenesis is needed. Among other genes, mutated PTEN-induced kinase 1 (PINK1) has been linked to early-onset and sporadic PD, but its mode of action is poorly understood. Most animal models of PD are based on the use of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP is metabolized to MPP+ by monoamine oxidase B (MAO B) and causes cell death of dopaminergic neurons in the substantia nigra in mammals. Zebrafish has been a widely used model organism in developmental biology, but is now emerging as a model for human diseases due to its ideal combination of properties. Zebrafish are inexpensive and easy to maintain, develop rapidly, breed in large quantities producing transparent embryos, and are readily manipulated by various methods, particularly genetic ones. In addition, zebrafish are vertebrate animals and results derived from zebrafish may be more applicable to mammals than results from invertebrate genetic models such as Drosophila melanogaster and Caenorhabditis elegans. However, the similarity cannot be taken for granted. The aim of this study was to establish and test a PD model using larval zebrafish. The developing monoaminergic neuronal systems of larval zebrafish were investigated. We identified and classified 17 catecholaminergic and 9 serotonergic neuron populations in the zebrafish brain. A 3-dimensional atlas was created to facilitate future research. Only one gene encoding MAO was found in the zebrafish genome. Zebrafish MAO showed MAO A-type substrate specificity, but non-A-non-B inhibitor specificity. Distribution of MAO in larval and adult zebrafish brains was both diffuse and distinctly cellular. Inhibition of MAO during larval development led to markedly elevated 5-hydroxytryptamine (serotonin, 5-HT) levels, which decreased the locomotion of the fish. MPTP exposure caused a transient loss of cells in specific aminergic cell populations and decreased locomotion. MPTP-induced changes could be rescued by the MAO B inhibitor deprenyl, suggesting a role for MAO in MPTP toxicity. MPP+ affected only one catecholaminergic cell population; thus, the action of MPP+ was more selective than that of MPTP. The zebrafish PINK1 gene was cloned in zebrafish, and morpholino oligonucleotides were used to suppress its expression in larval zebrafish. The functional domains and expression pattern of zebrafish PINK1 resembled those of other vertebrates, suggesting that zebrafish is a feasible model for studying PINK1. Translation inhibition resulted in cell loss of the same catecholaminergic cell populations as MPTP and MPP+. Inactivation of PINK1 sensitized larval zebrafish to subefficacious doses of MPTP, causing a decrease in locomotion and cell loss in one dopaminergic cell population. Zebrafish appears to be a feasible model for studying PD, since its aminergic systems, mode of action of MPTP, and functions of PINK1 resemble those of mammalians. However, the functions of zebrafish MAO differ from the two forms of MAO found in mammals. Future studies using zebrafish PD models should utilize the advantages specific to zebrafish, such as the ability to execute large-scale genetic or drug screens.
Resumo:
The basic goal of a proteomic microchip is to achieve efficient and sensitive high throughput protein analyses, automatically carrying out several measurements in parallel. A protein microchip would either detect a single protein or a large set of proteins for diagnostic purposes, basic proteome or functional analysis. Such analyses would include e.g. interactomics, general protein expression studies, detecting structural alterations or secondary modifications. Visualization of the results may occur by simple immunoreactions, general or specific labelling, or mass spectrometry. For this purpose we have manufactured chip-based proteome analysis devices that utilize the classical polymer gel electrophoresis technology to run one and two-dimensional gel electrophoresis separations of proteins in just a smaller size. In total, we manufactured three functional prototypes of which one performed a miniaturized one-dimensional gel electrophoresis (1-DE) separation, the second and third preformed two-dimensional gel electrophoresis (2-DE) separations. These microchips were successfully used to separate and characterize a set of predefined standard proteins, cell and tissue samples. Also, the miniaturized 2-DE (ComPress-2DE) chip presents a novel way of combining the 1st and 2nd dimensional separations, thus avoiding manual handling of the gels, eliminate cross-contamination, and make analyses faster and repeatability better. They all showed the advantages of miniaturization over the commercial devices; such as fast analysis, low sample- and reagent consumption, high sensitivity, high repeatability and inexpensive performance. All these instruments have the potential to be fully automated due to their easy-to-use set-up.
Resumo:
In epithelial-mesenchymal transition (EMT), epithelial cells acquire traits typical for mesenchymal cells, dissociate their cell-cell junctions and gain the ability to migrate. EMT is essential during embryogenesis, but may also mediate cancer progression. Basement membranes are sheets of extracellular matrix that support epithelial cells. They have a major role in maintaining the epithelial phenotype and, in cancer, preventing cell migration, invasion and metastasis. Laminins are the main components of basement membranes and may actively contribute to malignancy. We first evaluated the differences between cell lines obtained from oral squamous cell carcinoma and its recurrence. As the results indicated a change from epithelial to fibroblastoid morphology, E-cadherin to N-cadherin switch, and change in expression of cytokeratins to vimentin intermediate filaments, we concluded that these cells had undergone EMT. We further induced EMT in primary tumour cells to gain knowledge of the effects of transcription factor Snail in this cell model. The E-cadherin repressors responsible for the EMT in these cells were ZEB-1, ZEB-2 and Snail, and ectopic expression of Snail was able to augment the levels of ZEB-1 and ZEB-2. We produced and characterized two monoclonal antibodies that specifically recognized Snail in cell lines and patient samples. By immunohistochemistry, Snail protein was found in mesenchymal tissues during mouse embryonal development, in fibroblastoid cells of healing skin wounds and in fibromatosis and sarcoma specimens. Furthermore, Snail localized to the stroma and borders of tumour cell islands in colon adenocarcinoma, and in laryngeal and cervical squamous cell carcinomas. Immunofluorescence labellings, immunoprecipitations and Northern and Western blots showed that EMT induced a progressive downregulation of laminin-332 and laminin-511 and, on the other hand, an induction of mesenchymal laminin-411. Chromatin immunoprecipitation revealed that Snail could directly bind upstream to the transcription start sites of both laminin α5 and α4 chain genes, thus regulating their expression. The levels of integrin α6β4, a receptor for laminin-332, as well as the hemidesmosomal complex proteins HD1/plectin and BP180 were downregulated in EMT-experienced cells. The expression of Lutheran glycoprotein, a specific receptor for laminin-511, was diminished, whereas the levels of integrins α6β1 and α1β1 and integrin-linked kinase were increased. In quantitative cell adhesion assays, the cells adhered potently to laminin-511 and fibronectin, but only marginally to laminin-411. Western blots and immunoprecipitations indicated that laminin-411 bound to fibronectin and could compromise cell adhesion to fibronectin in a dose-dependent manner. EMT induced a highly migratory and invasive tendency in oral squamous carcinoma cells. Actin-based adhesion and invasion structures, podosomes and invadopodia, were detected in the basal cell membranes of primary tumour and spontaneously transformed cancer cells, respectively. Immunofluorescence labellings showed marked differences in their morphology, as podosomes organized a ring structure with HD1/plectin, αII-spectrin, talin, focal adhesion kinase and pacsin 2 around the core filled with actin, cortactin, vinculin and filamin A. Invadopodia had no division between ring and core and failed to organize the ring proteins, but instead assembled tail-like, narrow actin cables that showed a talin-tensin switch. Time-lapse live-cell imaging indicated that both podosomes and invadopodia were long-lived entities, but the tails of invadopodia vigorously propelled in the cytoplasm and were occasionally released from the cell membrane. Invadopodia could also be externalized outside the cytoplasm, where they still retained the ability to degrade matrix. In 3D confocal imaging combined with in situ gelatin zymography, the podosomes of primary tumour cells were large, cylindrical structures that increased in time, whereas the invadopodia in EMT-driven cells were smaller, but more numerous and degraded the underlying matrix in significantly larger amounts. Fluorescence recovery after photobleaching revealed that the substructures of podosomes were replenished more rapidly with new molecules than those of invadopodia. Overall, our results indicate that EMT has a major effect on the transcription and synthesis of both intra- and extracellular proteins, including laminins and their receptors, and on the structure and dynamics of oral squamous carcinoma cells.
Resumo:
Distinct endogenous network events, generated independently of sensory input, are a general feature of various structures of the immature central nervous system. In the immature hippocampus, these type of events are seen as "giant depolarizing potentials" (GDPs) in intracellular recordings in vitro. GABA, the major inhibitory neurotransmitter of the adult brain, has a depolarizing action in immature neurons, and GDPs have been proposed to be driven by GABAergic transmission. Moreover, GDPs have been thought to reflect an early pattern that disappears during development in parallel with the maturation of hyperpolarizing GABAergic inhibition. However, the adult hippocampus in vivo also generates endogenous network events known as sharp (positive) waves (SPWs), which reflect synchronous discharges of CA3 pyramidal neurons and are thought to be involved in cognitive functions. In this thesis, mechanisms of GDP generation were studied with intra- and extracellular recordings in the neonatal rat hippocampus in vitro and in vivo. Immature CA3 pyramidal neurons were found to generate intrinsic bursts of spikes and to act as cellular pacemakers for GDP activity whereas depolarizing GABAergic signalling was found to have a temporally non-patterned facilitatory role in the generation of the network events. Furthermore, the data indicate that the intrinsic bursts of neonatal CA3 pyramidal neurons and, consequently, GDPs are driven by a persistent Na+ current and terminated by a slow Ca2+-dependent K+ current. Gramicidin-perforated patch recordings showed that the depolarizing driving force for GABAA receptor-mediated actions is provided by Cl- uptake via the Na-K-C1 cotransporter, NKCC1, in the immature CA3 pyramids. A specific blocker of NKCC1, bumetanide, inhibited SPWs and GDPs in the neonatal rat hippocampus in vivo and in vitro, respectively. Finally, pharmacological blockade of the GABA transporter-1 prolonged the decay of the large GDP-associated GABA transients but not of single postsynaptic GABAA receptor-mediated currents. As a whole the data in this thesis indicate that the mechanism of GDP generation, based on the interconnected network of bursting CA3 pyramidal neurons, is similar to that involved in adult SPW activity. Hence, GDPs do not reflect a network pattern that disappears during development but they are the in vitro counterpart of neonatal SPWs.
Resumo:
Sufficient evidence tended to indicate that at least four factors can negatively influence broiler performance when offered sorghum-based diets; in particular energy utilisation of sorghum in young birds. It was proposed that mainly CT would further influence sorghum grain AME values when consumed by young chicks (0-7 and 7-14 d old). Overall, birds consuming sorghum-based diets during the starter phase (0-21 d), did not match the performance of birds offered wheat-based diets. The use of phytase enzymes in sorghum-based diets tended to improve bird performance. However, reducing the obtained AME of sorghum grains by -0.8 MJ during the 0-21 d period appears to be a practical solution.
Resumo:
Cardiovascular diseases (CVD) are a major cause of death and disability in Western countries and a growing health problem in the developing world. The genetic component of both coronary heart disease (CHD) and ischemic stroke events has been established in twin studies, and the traits predisposing to CVD, such as hypertension, dyslipidemias, obesity, diabetes, and smoking behavior, are all partly hereditary. Better understanding of the pathophysiology of CVD-related traits could help to target disease prevention and clinical treatment to individuals at an especially high disease risk and provide novel pharmaceutical interventions. This thesis aimed to clarify the genetic background of CVD at a population level using large Nordic population cohorts and a candidate gene approach. The first study concentrated on the allelic diversity of the thrombomodulin (THBD) gene in two Finnish cohorts, FINRISK-92 and FINRISK-97. The results from this study implied that THBD variants do not substantially contribute to CVD risk. In the second study, three other candidate genes were added to the analyses. The study investigated the epistatic effects of coagulation factor V (F5), intercellular adhesion molecule -1 (ICAM1), protein C (PROC), and THBD in the same FINRISK cohorts. The results were encouraging; we were able to identify several single SNPs and SNP combinations associating with CVD and mortality. Interestingly, THBD variants appeared in the associating SNP combinations despite the negative results from Study I, suggesting that THBD contributes to CVD through gene-gene interactions. In the third study, upstream transcription factor -1 (USF1) was analyzed in a cohort of Swedish men. USF1 was associated with metabolic syndrome, characterized by accumulation of different CVD risk factors. A putative protective and a putative risk variant were identified. A direct association with CVD was not observed. The longitudinal nature of the study also clarified the effect of USF1 variants on CVD risk factors followed in four examinations throughout adulthood. The three studies provided valuable information on the study of complex traits, highlighting the use of large study samples, the importance of replication, and the full coverage of the major allelic variants of the target genes to assure reliable findings. Although the genetic basis of coronary heart disease and ischemic stroke remains unknown, single genetic findings may facilitate the recognition of high-risk subgroups.
Resumo:
The nuclear receptor (NR) superfamily is comprised of receptors for small lipopfilic ligands such as steroid hormones, thyroid hormone, retinoids, and vitamin D. NRs are ligand-inducible transcription factors capable of both activating and repressing their target gene expression. They control a wide range of biological functions connected to growth, development, and homeostasis. In addition to the ligand-regulated receptors, the family includes a large group of receptors whose physiological ligands are unknown. These receptors are referred to as orphan NRs. Estrogen-related receptor gamma (ERRgamma) belongs to the ERR subfamily of orphan NRs together with the related ERRalpha and ERRbeta. ERRs share amino acid sequence homology with the classical estrogen receptors (ERs) but they are unable to bind natural estrogenic ligands. ERRgamma is expressed in several embryonic and adult tissues but its biological role is still largely unknown. ERRgamma activates reporter gene expression in transfected cells independently of added hormones implying that ERRgamma harbors constitutive activity. However, the intrinsic activity of ERRgamma can be inhibited by synthetic compounds such as the selective estrogen receptor modulator 4-hydroxytamoxifen (4-OHT). Ligands of NRs can act as agonists that activate transcription, as antagonists that prevent activation of transcription, or as inverse agonists that antagonize the constitutive transcriptional activity of receptor. Most of the synthetic ERRgamma ligands act as inverse agonists but recently, a synthetic ERRgamma agonist GSK4716 was identified. This demonstrates that it is possible to design and identify agonists for ERRgamma. Prior to this thesis work, the structural and functional characteristics of ERRgamma were largely unknown. The aim of this study was to define the functional requirements for ERRgamma-mediated transcriptional regulation and to examine the cross-talk between ERRgamma and other NRs. Due to the fact that natural physiological ligands of ERRgamma are unknown, another aim of this study was to seek new natural compounds that may affect transcriptional activity of ERRgamma. Plant-derived phytoestrogens have previously been shown to act as ligands for ERs and ERRalpha, and therefore the effects of these compounds were also studied on ERRgamma-mediated transcriptional regulation. This work demonstrated that ERRgamma-mediated transcriptional regulation was dependent on DNA-binding, dimerization and activation function-2. Heterodimerization with ERRalpha inhibited the transcriptional activity of ERRgamma. In addition to 4-OHT, another anti-estrogen, 4-hydroxytoremifene (4-OHtor), was identified as an inverse agonist of ERRgamma. Interestingly, ERRgamma activated transcription in the presence of 4-OHT and 4-OHtor on activator protein-1 binding sites. ERRgamma was found to interact with another orphan NR Nurr1 by repressing the ability of Nurr1 to activate transcription of the osteopontin gene. Transcriptional activity of ERRgamma was shown to be stimulated by the phytoestrogen equol. Structural model analysis and mutational experiments indicated that equol was able to bind to the ligand binding domain of ERRgamma. The growth inhibitory effect of ERRgamma on prostate cancer cells was found to be enhanced by equol. In summary, this study demonstrates that despite the absence of an endogenous physiological ligand, the activity of ERRgamma can be modulated in other ways such as dimerization with related receptors or by cross-talk with other transcription factors as well as by binding some synthetic or natural compounds.
Resumo:
Fire resistance of cold-formed light gauge steel frame (LSF) wall systems is enhanced by lining them with single or multiple layers of wall boards with varying thermal properties. These wall boards are gypsum plasterboards or Magnesium Oxide (MgO) boards produced by different manufacturers. Thermal properties of these boards appear to show considerable variations and this can lead to varying fire resistance levels (FRL) for their wall systems. Currently FRLs of wall systems are determined using full scale fire tests, but they are time consuming and expensive. Recent research studies on the fire performance of LSF wall systems have used finite element studies to overcome this problem, but they were developed based on 1-D and 2-D finite element platform capable of performing either heat transfer or structural analysis separately. Hence in this research a 3-D finite element model was developed first for LSF walls lined with gypsum plasterboard and cavity insulation materials. Accurate thermal properties of these boards are essential for finite element modelling, and thus they were measured at both ambient and elevated temperatures. This experimental study included specific heat, relative density and thermal conductivity of boards. The developed 3-D finite element model was then validated using the available fire tests results of LSF walls lined with gypsum plasterboard, and is being used to investigate the fire performance of different LSF wall configurations. The tested MgO board exhibited significant variations in their thermal properties in comparison to gypsum plasterboards with about 50% loss of its initial mass at about 500 ºC compared to 16% for gypsum plasterboards. Hence the FRL of MgO board lined LSF wall systems is likely to be significantly reduced. This paper presents the details of this research study on the fire performance of LSF wall systems lined with gypsum plasterboard and MgO board including the developed 3-D finite element models, thermal property tests and the results.