1000 resultados para Electron localizations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

4.2 K photoluminescence (PL) and 77 K standard Hall-effect measurements were performed for In0.52Al0.48As/InxGa1-xAs metamorphic high-electron-mobility-transistor (HEMT) structures grown on GaAs substrates with different indium contents in the InxGa1-xAs well or different Si delta-doping concentrations. It was found that electron concentrations increased with increasing PL intensity ratio of the "forbidden" transition (the second electron subband to the first heavy-hole subband) to the sum of the "allowed" transition (the first electron subband to the first heavy-hole subband) and the forbidden transition. And electron mobilities decreased with increasing product of the average full width at half maximum of allowed and forbidden transitions and the electron effective mass in the InxGa1-xAs quantum well. These results show that PL measurements are a good supplemental tool to Hall-effect measurements in optimization of the HEMT layer structure. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An internal shrinkage of nanocavity in silicon was in situ observed under irradiation of energetic electron on electron transmission microscopy. Because there is no addition of any external materials to cavity site, a predicted nanosize effect on the shrinkage was observed. At the same time, because there is no ion cascade effect as encountered in the previous ion irradiation-induced nanocavity shrinkage experiment, the electron irradiation-induced instability of nanocavity also provides a further more convincing evidence to demonstrate the predicted irradiation-induced athermal activation effect. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optical manipulation of electron spins is of great benefit to solid-state quantum information processing. In this letter, we provide a comparative study on the ultrafast optical manipulation of single electron spin in the doped and undoped quantum dots. The study indicates that the experimental breakthrough can be preliminarily made in the undoped quantum dots, because of the relatively less demand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Closely related to the quantum information processing in solid states, we study the quantum measurement of single electron state by a mesoscopic charge-sensitive detector, namely the quantum point contact (QPC). We find that the conventional Lindblad-type master equation is not appropriate for describing the underlying measurement dynamics. The treatment developed in this work properly accounts for the energy-exchange between the detector and the measured system, and its role on the detailed-balance relation. A valid description for the QPC measurement dynamics is provided which may have impact on the study of quantum measurement and quantum feedback control in solid states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The principle of high-electron-mobility transistor (HEMT) and the property of two-dimensional electron gas (2DEG) have been analyzed theoretically. The concentration and distribution of 2DEG in various channel layers are calculated by numerical method. Variation of 2DEG concentration in different subband of the quantum well is discussed in detail. Calculated results show that sheet electron concentration of 2DEG in the channel is affected slightly by the thickness of the channel. But the proportion of electrons inhabited in different subbands can be affected by the thickness of the channel. When the size of channel lies between 20-25 nm, the number of electrons occupying the second subband reaches the maximum. This result can be used in parameter design of materials and devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron irradiation-induced deep level defects have been studied in InP which has undergone high-temperature annealing in phosphorus and iron phosphide ambients, respectively. In contrast to a high concentration of irradiation-induced defects in as-grown and phosphorus ambient annealed InP, InP pre-annealed in iron phosphide ambient has a very low concentration of defects. The phenomenon has been explained in terms of a faster recombination of radiation-induced defects in the annealed InP. The radiation-induced defects in the annealed InP have been compared and studied. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic structure, electron g factors and optical properties of InAs quantum ellipsoids are investigated, in the framework of the eight-band effective-mass approximation. It is found that the light-hole states come down in comparison with the heavy-hole states when the spheres are elongated, and become the lowest states of the valence band. Circularly polarized emissions under circularly polarized excitations may have opposite polarization factors to the exciting light. For InAs ellipsoids the length, which is smaller than 35 nm, is still in a strongly quantum-confined regime. The electron g factors of InAs spheres decrease with increasing radius, and are nearly 2 when the radius is very small. The quantization of the electron states quenches the orbital angular momentum of the states. Actually, as some of the three dimensions increase, the electron g factors decrease. As more dimensions increase, the g factors decrease more. The dimensions perpendicular to the direction of the magnetic field affect the g factors more than the other dimension. The magnetic field along the z axis of the crystal structure causes linearly polarized emissions in the spheres, which emit unpolarized light in the absence of magnetic field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic structure and electron g factors of HgTe quantum dots are investigated, in the framework of the eight-band effective-mass approximation. It is found that the electron states of quantum spheres have aspheric properties due to the interaction between the conduction band and valence band. The highest hole states are S (l = 0) states, when the radius is smaller than 9.4 nm. the same as the lowest electron states. Thus strong luminescence from H-Te quantum dots with radius smaller than 9.4 nm has been observed (Rogach et al 2001 Phys. Statits Solidi b 224 153). The bandgap of H-Te quantum spheres is calculated and compared with earlier experimental results (Harrison et al 2000 Pure Appl. Chem. 72 295). Due to the quantum confinement effect, the bandgap of the small HgTe quantum spheres is positive. The electron g factors of HgTe quantum spheres decrease with increasing radius and are nearly 2 when the radius is very small. The electron g factors of HgTe quantum ellipsoids are also investigated. We found that as some of the three dimensions increase, the electron g factors decrease. The more the dimensions increase, the more the g factors decrease. The dimensions perpendicular to the direction of the magnetic field affect the g factors more than the other dimension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular beam epitaxy was employed to manufacture self-assembled InAs/GaAs quantum dot Schottky resonant tunneling diodes. By virtue of a thin AlAs insertion barrier, the thermal current was effectively reduced and electron resonant tunneling through quantum dots under both forward and reverse biased conditions was observed at relatively high temperature of 77 K. The ground states of quantum dots were found to be at similar to 0.19 eV below the conduction band of GaAs matrix. The theoretical computations were in conformity with experimental data. (c) 2006 The Electrochemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new structure of GaAs photocathode was introduced. The Be-doping concentration is variable in the new structure compared with the constant concentration of Be in the normal photocathode. Negative electron affinity GaAs photocathodes were fabricated by alternate input of Cs and O. The spectral response results measured by the on-line spectral response measurement system show that the integrated photosensitivity of the photocathodes with the new structure is enhanced by at least 50% as compared to those with the monolayer structure. Accordingly, two main factors leading to the enhanced photosensitivity of the photocathodes were discussed. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The techniques of fabricating metallic air bridges using different resists in a one-step electron beam lithography are presented. The exposure process employed a single-layer polymethyl methacrylate (PMMA) or photoresists with either different doses in the span and feet areas or with varying acceleration voltage of the electron beam. The process using photoresists with different doses has produced air bridges more stable than what the PMMA method using various acceleration voltages would achieve. Using this method, air bridges up to 12 mu m long have been fabricated. The length and height of these metallic air bridges vary with the photoresist thickness. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The converse effects of spin photocurrent and current induced spin polarization are experimentally demonstrated in a two-dimensional electron gas system with Rashba spin splitting. Their consistency with the strength of the Rashba coupling as measured for the same system from beating of the Shubnikov-de Haas oscillations reveals a unified picture for the spin photocurrent, current-induced spin-polarization, and spin-orbit coupling. In addition, the observed spectral inversion of the spin photocurrent indicates a system with dominating structure inversion asymmetry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magneto-transport measurements have been carried out on a Si heavily delta-doped In0.52Al0.48As/In(0.53)G(0.47)As single quantum well in the temperature range between 1.5 and 60 K under magnetic field up to 10 T. We studied the Shubnikov-de Haas(SdH) effect and the Hall effect for the In0.52Al0.48As/In(0.53)G(0.47)As single quantum well occupied by two subbands, and have obtained the electron concentration, mobility, effective mass and energy levels respectively. The electron concentrations of the two subbands derived from mobility spectrum combined with multi-carrier fitting analysis are well consistent with the result from the SdH oscillation. From fast Fourier transform analysis for d(2)rho/dB(2)-1/B, it is observed that there is a frequency of f(1)-f(2) insensitive to the temperature, besides the frequencies f(1), f(2) for the two subbands and the frequency doubling 2f(1), both dependent on the temperature. This is because That the electrons occupying the two different subbands almost have the same effective mass in the quantum well and the magneto-intersubband scattering between the two subbands is strong.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Monte Carlo simulation on the basis of quantum trajectory approach is carried out for the measurement dynamics of a single-electron spin resonance. The measured electron, which is confined in either a quantum dot or a defect trap, is tunnel coupled to a side reservoir and continuously monitored by a mesoscopic detector. The simulation not only recovers the observed telegraphic signal of detector current, but also predicts unique features in the output power spectrum which are associated with electron dynamics in different regimes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular beam epitaxy is employed to manufacture self-assembled InAs/AlAs quantum-dot resonant tunneling diodes. The resonant tunneling current is superimposed on the thermal current, and together they make up the total electron transport in devices. Steps in current-voltage characteristics and peaks in capacitance-voltage characteristics are explained as electron resonant tunneling via quantum dots at 77 or 300 K, and thus resonant tunneling is observed at room temperature in III-V quantum-dot materials. Hysteresis loops in the curves are attributed to hot electron injection/emission process of quantum dots, which indicates the concomitant charging/discharging effect. (c) 2006 The Electrochemical Society.