906 resultados para Computadoras digitales electronicas-Instrucción programada
Resumo:
La didáctica es una disciplina y campo de estudio donde se concretan muchos de los esfuerzos de la actividad educativa, donde se ponen en plata blanca los ideales, principios, métodos, criterios y herramientas que permiten al docente asumir la función de enseñar. ¿Cabe repensar la manera de aprender a enseñar, de cara a los requerimientos de la sociedad del conocimiento? ¿Cómo ayudar a que el docente desarrolle criterio y habilidad para tomar decisiones educativas que le permitan asumir la función de facilitador desde el lado en procesos educativos donde la diversidad y la complejidad son evidentes? ¿Cómo aprovechar para el mejoramiento de la actividad docente las oportunidades de tecnologías que son normales para los nativos digitales? ¿Cómo ayudar a que los futuros docentes y los docentes en servicio vivan experiencias docentes relevantes, indaguen sobre objetos de conocimiento que les llamen la atención, reflexionen sobre las distintas dimensiones de la experiencia educativa, socialicen con colegas y construyan colaborativamente nuevas ideas sobre cómo enseñar? En este documento proponemos hacer CLIC* en la didáctica y apostarle a ensayar el uso de video casos interactivos para esto.
Resumo:
Se desarrolla la noción de razonamiento covariacional y se propone un marco conceptual para describir las acciones mentales involucradas al aplicar razonamiento covariacional cuando se interpretan y representan funciones asociadas a eventos dinámicos. Se reporta la habilidad para razonar sobre cantidades covariantes en situaciones dinámicas, de estudiantes de alto desempeño en un curso de cálculo. El estudio reveló que ellos eran capaces de construir imágenes de la variable dependiente de una función que cambia simultáneamente con el cambio imaginado de la variable independiente, y en algunas ocasiones eran capaces de construir imágenes de la razón de cambio para intervalos contiguos del dominio de una función. Sin embargo, al parecer, tuvieron dificultad para formar imágenes de una razón cambiante de manera continua y no pudieron representar con exactitud o interpretar los puntos de inflexión ni la razón creciente y decreciente para funciones asociadas a situaciones dinámicas. Estos hallazgos sugieren que el currículo y la instrucción deberían aumentar el énfasis en el cambio que debe darse en los alumnos de una imagen coordinada de dos variables que cambian simultáneamente a una imagen coordinada de razón de cambio instantánea con cambios continuos en la variable independiente para funciones asociadas a situaciones dinámicas.
Resumo:
El análisis de actuación corresponde al cuarto y último de los análisis que componen el análisis didáctico. Con él se cierra un ciclo de análisis y se enlaza con el comienzo de un nuevo ciclo. El interés de este módulo se centra en la planificación del seguimiento del aprendizaje de los escolares y del propio proceso de enseñanza durante la implementación de lo planificado en el análisis de instrucción, con objeto de comparar las previsiones que han hecho en dicha planificación con lo que sucederá cuando ésta se lleve a cabo en el aula. Esta comparación redundará en ajustes puntuales de la planificación durante el mismo proceso de instrucción, así en como reformulaciones globales, de cara a un nuevo ciclo de análisis didáctico.
Resumo:
Este trabajo tuvo por objetivo determinar lo que han comprendido sobre ecuaciones algebraicas los alumnos, al finalizar la escuela secundaria e ingresar en la universidad. Para ello, analizamos las producciones escritas de 55 alumnos aspirantes a ingresar a una carrera de nivel universitario, posicionándonos en el Enfoque Ontosemiótico del conocimiento y la instrucción matemática, como marco teórico y metodológico de la Didáctica de la Matemática. Analizar la comprensión que tienen los alumnos sobre las ecuaciones, nos llevó a determinar si reconocen el campo de problemas en que se involucra este objeto matemático, aplican y recuerdan (implícitamente en la mayoría de los casos) los conceptos, propiedades y procedimientos que se requieren para llevar a cabo exitosamente las tareas, y utilizan lenguaje y argumentos apropiados en sus explicaciones. Como resultado final, obtuvimos una aproximación a la configuración cognitiva de cada estudiante, lo que permitió valorar la comprensión que tienen sobre el objeto matemático en cuestión.
Resumo:
El propósito de este curso es el de compartir algunas reflexiones relacionadas con la estrategia metodológica de resolución de problemas matemáticos, revisar las ideas de Polya (1990), Schoenfeld (1985), del informe PISA, de la NCTM y especialmente el enfoque “Open Ended” (Becker y Shimada, 2005) utilizado por los japoneses en el aula. También se describen aspectos históricos de la utilización de tecnologías digitales en el proceso de resolución de problemas, principalmente las estrategias utilizadas por investigadores en inteligencia artificial.
Resumo:
El propósito de este reporte de investigación es el de compartir algunas creencias y concepciones de un profesor de matemática de una institución pública de enseñanza secundaria y de sus alumnos de décimo año acerca del tema de funciones y del uso de tecnologías digitales en el proceso de enseñanza y de aprendizaje de las matemáticas. La investigación desarrollada es de tipo cualitativo y los datos fueron obtenidos mediante la aplicación de varios instrumentos y la observación en el aula.
Resumo:
El presente trabajo consistió en caracterizar los significados elementales y sistémicos a los protocolos de respuestas dadas por un estudiante sobre ecuaciones de segundo grado y los puestos de manifiesto, en relación al mismo tema, por los autores del libro de texto que se utilizó de apoyo a la enseñanza y aprendizaje. Para tal fin aplicamos la técnica del análisis semiótico, generada del modelo ontológico semiótico de la cognición e instrucción matemática (Godino, 2003 y Godino y Arrieche, 2001), que nos permitió determinar el significado institucional de referencia y el significado personal declarado. También se identificaron conflictos semióticos, es decir; discordancias entre los significados personales e institucionales.
Resumo:
Los esquemas lógico-matemáticos desarrollados durante el crecimiento y formación dentro de un sistema educativo podrían influir y marcar cierta evolución sobre los sesgos del pensamiento probabilístico de los estudiantes, aun cuando éstos no reciban instrucción formal en probabilidades. Esta investigación ha sido realizada con 152 estudiantes de nivel medio entre 13 y 17 años. Los objetivos de la misma han sido: (a) identificar y analizar la influencia de esquemas lógico-matemáticos sobre sesgos intuitivos en juicios bajo incerteza cuando no existe conocimiento probabilístico formal y (b) analizar la evolución etaria de estos procesos. La metodología utilizada es mixta. Los instrumentos han sido cuestionarios con preguntas orientadas a la detección de algunos sesgos intuitivos y los esquemas actuantes.
Resumo:
La enseñanza y el aprendizaje formalizado de los números irracionales en la formación inicial de profesores de secundaria son problemáticos. Un análisis histórico y epistemológico de la noción de número irracional, sirve de base para enmarcar un estudio empírico, con estudiantes para profesor, que indaga el proceso de construcción de la noción de cardinalidad del conjunto de los números irracionales y la densidad de en R\Q en R. El estudio se realiza por medio de algunos elementos teóricos del enfoque ontosemiótico del conocimiento de y de la instrucción matemáticos. La identificación, por parte del estudiante, de la cardinalidad de conjuntos infinitos, hace posible la emergencia de fenómenos relativos a los cardinales transfinitos, determinándose diferentes tipos de errores y conflictos cognitivos.
Resumo:
La teoría de instrucción matemática significativa basada en el modelo ontológico -semiótico de la cognición matemática denominado Teoría de las Funciones Semióticas (TFS ) proporciona un marco unificado para el estudio de las diversas formas de conocimiento matemático y sus respectivas interacciones en el seno de los sistemas didácticos (Godino, 1998 ). Presentamos un desarrollo de esta teoría consistente en la descomposición de un objeto, para nuestro modelo, la Continuidad, en unidades para identificar entidades y las funciones semióticas que se establecen, en el proceso de enseñanza y aprendizaje en una institución escolar, implementando un ambiente de tecnología digital (calculadora graficadora TI-92 Plus y/o Voyage 200).
Resumo:
Diversas investigaciones se interesan por la inserción de los “conocimientos previos” de los estudiantes en el proceso de aprendizaje de las matemáticas, considerándolos como bases iniciales de significados que deben ser sustituidos por medio de la instrucción “formal”. A diferencia de lo anterior, el propósito de la investigación es legitimar los saberes que se encuentran en el cotidiano. Para ello, se conforma, desde la socioepistemología, la categoría del cotidiano del ciudadano que resalta una función social particular del conocimiento matemático. Para la conformación de la evidencia empírica, se da cuenta de los usos de las gráficas en talleres de divulgación científica, evidenciando cómo el cotidiano brinda elementos funcionales que podrían conformar parte de un rediseño del discurso matemático escolar.
Resumo:
En este capítulo, presentamos el proceso de diseño e implementación de la unidad didáctica del cuadrado de un binomio para grado octavo. Iniciamos con la descripción de los análisis previos (análisis de contenido, análisis cognitivo y análisis de instrucción) a la implementación que permitieron producir el primer diseño de la unidad didáctica del tema. Seguidamente, detallamos el trabajo realizado en el análisis de actuación, con el cual empezamos a analizar y a revaluar aspectos del diseño implementado de acuerdo con los resultados obtenidos por los estudiantes. Justi camos el nuevo diseño de la unidad didáctica con base en los resultados de esos análisis. Por último, concluimos con algunas re exiones sobre la experiencia vivida a lo largo del proceso.
Resumo:
El análisis de actuación corresponde al cuarto y último de los análisis que componen el análisis didáctico. Con él se cierra un ciclo de análisis y se enlaza con el comienzo de un nuevo ciclo. El interés de este módulo se centra en la planificación del seguimiento del aprendizaje de los escolares y del propio proceso de enseñanza durante la implementación de lo planificado en el análisis de instrucción, con objeto de comparar las previsiones que han hecho en dicha planificación con lo que sucederá cuando ésta se lleve a cabo en el aula. Esta comparación redundará en ajustes puntuales de la planificación durante el mismo proceso de instrucción, así en como reformulaciones globales, de cara a un nuevo ciclo de análisis didáctico.
Resumo:
Este artículo se basa en que las nuevas tecnologías representan una alternativa para la enseñanza y el aprendizaje de las matemáticas; las calculadoras simples, las calculadoras gráficas y las computadoras han ido desplazando a la tiza y a la pizarra, pues los temas pueden ser mostrados con mayor dinamismo y agilidad. Sin embargo, un problema muy común entre los profesores es que cuentan con la tecnología para innovar, pero no saben como hacerlo, en el artículo se sugieren algunas formas de utilizar la tecnología para introducir el concepto de derivada, algunos modos de aproximarla y, por último, cómo obtener reglas generales.
Resumo:
Aún si su trabajo parece no estar vinculado con la matemática, Mathematica puede ser de su interés. Con este recurso el arduo trabajo del cálculo -numérico o simbólico- resulta cosa del pasado, el desarrollo de materiales didácticos tiene nuevas y revolucionarias herramientas, las aplicaciones de modelos matemáticos pueden producir resultados sin ocuparse de la implementación computacional de complicados algoritmos matemáticos, en suma, con las computadoras y Mathematica se multiplican las capacidades para entender, desarrollar y aplicar las matemáticas y ciencias afines.