442 resultados para superlattices
Resumo:
We have studied the Wannier-Stark effect in GaAs/GaAlAs short-period superlattices under applied electric field perpendicular to the layers by room- and low-temperature photocurrent measurements. The changes in the transition intensities with biasing are well fitted to a theoretical calculation based on the finite Kronig-Penney model on which the potential of an applied electric field is superposed. With increasing electric field, the 0h peak grows to a maximum while the -1h and +1h peaks monotonousely decrease. By a comparison of the spectra measured at different temperatures, the two peaks in the room temperature photocurrent spectra at relatively low electric field (1.0 X 10(4) V/cm) are identified to be caused by the Wannier localization effect instead of saddle-point excitons.
Resumo:
The existing interpretation of the T-1 temperature dependence of the low-field miniband conduction is derived from certain concepts of conventional band theory for band structures resulting from spatial periodicities commensurable with the dimensionalities of the system. It is pointed out that such concepts do not apply to the case of miniband conduction, where we are dealing with band structures resulting from a one-dimensional periodicity in a three-dimensional system. It is shown that in the case of miniband conduction, the current carriers are distributed continuously over all energies in a sub-band, but only those with energies within the width of the miniband contribute to the current. The T-1 temperature dependence of the low-field mobility is due to the depletion of these current-carrying carriers with the rise of temperature.
Resumo:
The near-resonance Raman scattering of GaAs/AlAs superlattices is investigated at room temperature. Owing to the resonance enhancement of Frohlich interaction, the scattering intensity of even LO confined modes with A1 symmetry becomes much stronger than that of odd modes with B2 symmetry. The even modes were observed in the polarized spectra, while the odd modes appear in the depolarized spectra as in the off-resonance case. The second-order Raman spectra show that the polarized spectra are composed of the overtone and combinations of even modes, while the depolarized spectra are composed of the combinations of one odd mode and one even mode. The results agree well with the selection rules predicted by the microscopic theory of Raman scattering in superlattices, developed recently by Huang and co-workers. In addition, the interface modes and the combinations of interface modes and confined modes are also observed in the two configurations.
Resumo:
Raman spectra of (GaAs)n1/(AlAs)n2 ultrathin-layer superlattices were measured at room temperature and under off-resonance conditions. The experimental results show that there are two effects in ultrathin-layer superlattices: the confinement effect of LO phonons and the alloy effect. It is found that the relative intensity of the disorder-activated TO mode can give a measure of the alloy effect. The Raman spectra of one-monolayer superlattices measured in various scattering configurations are very similar to those of the Al0.5Ga0.5As alloy, and thus the alloy effect is prominent. However, in the case of monolayer number n greater-than-or-equal-to 4, the confined effect is prominent, while the alloy effect is only shown as an interface effect.
Resumo:
An effective-mass formulation for superlattices grown on (11N)-oriented substrates is given. It is found that, for GaAs/AlxGa1-xAs superlattices, the hole subband structure and related properties are sensitive to the orientation because of the large anisotropy of the valence band. The energy-level positions for the heavy hole and the optical transition matrix elements for the light hole apparently change with orientation. The heavy- and light-hole energy levels at k parallel-to = 0 can be calculated separately by taking the classical effective mass in the growth direction. Under a uniaxial stress along the growth direction, the energy levels of the heavy and light holes shift down and up, respectively; at a critical stress, the first heavy- and light-hole energy levels cross over. The energy shifts caused by the uniaxial stress are largest for the (111) case and smallest for the (001) case. The optical transition matrix elements change substantially after the crossover of the first heavy- and light-hole energy has occurred.
Resumo:
Side bands due to purely composition and combined composition-strain modulation in plan-view specimens of a nominally Ge0.5Si0.5(5nm)/Si(25nm) superlattice have been obtained by large-angle convergent-beam electron diffraction. The intensities of the side bands have been calculated from a periodic tension-compression model of the superlattice bilayer using the kinematical theory of electron diffraction. Accurate values of elastic strains in the bilayer and of the Ge content can be obtained in this way.
Resumo:
The theoretical treatment of magnetic levels formed in the minibands of superlattices under an in-plane magnetic field is discussed. It is found that the results of semiclassical and envelope-function treatments based on miniband structures are in good agreement with the results calculated strictly by the quantum-mechanical method, so long as the critical parameter 2hc/eBL2 is larger than 1. The wave functions obtained are in the nature of superlattice envelope functions, which are over and above the usual effective-mass envelope functions for bulk materials.