968 resultados para infinite dimensional differential geometry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An integration by parts formula is derived for the first order differential operator corresponding to the action of translations on the space of locally finite simple configurations of infinitely many points on Rd. As reference measures, tempered grand canonical Gibbs measures are considered corresponding to a non-constant non-smooth intensity (one-body potential) and translation invariant potentials fulfilling the usual conditions. It is proven that such Gibbs measures fulfill the intuitive integration by parts formula if and only if the action of the translation is not broken for this particular measure. The latter is automatically fulfilled in the high temperature and low intensity regime.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A temporally global solution, if it exists, of a nonautonomous ordinary differential equation need not be periodic, almost periodic or almost automorphic when the forcing term is periodic, almost periodic or almost automorphic, respectively. An alternative class of functions extending periodic and almost periodic functions which has the property that a bounded temporally global solution solution of a nonautonomous ordinary differential equation belongs to this class when the forcing term does is introduced here. Specifically, the class of functions consists of uniformly continuous functions, defined on the real line and taking values in a Banach space, which have pre-compact ranges. Besides periodic and almost periodic functions, this class also includes many nonrecurrent functions. Assuming a hyperbolic structure for the unperturbed linear equation and certain properties for the linear and nonlinear parts, the existence of a special bounded entire solution, as well the existence of stable and unstable manifolds of this solution are established. Moreover, it is shown that this solution and these manifolds inherit the temporal behaviour of the vector field equation. In the stable case it is shown that this special solution is the pullback attractor of the system. A class of infinite dimensional examples involving a linear operator consisting of a time independent part which generates a C(0)-semigroup plus a small time dependent part is presented and applied to systems of coupled heat and beam equations. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Following the lines of the celebrated Riemannian result of Gromoll and Meyer, we use infinite dimensional equivariant Morse theory to establish the existence of infinitely many geometrically distinct closed geodesics in a class of globally hyperbolic stationary Lorentzian manifolds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last 30 to 40 years, many researchers have combined to build the knowledge base of theory and solution techniques that can be applied to the case of differential equations which include the effects of noise. This class of ``noisy'' differential equations is now known as stochastic differential equations (SDEs). Markov diffusion processes are included within the field of SDEs through the drift and diffusion components of the Itô form of an SDE. When these drift and diffusion components are moderately smooth functions, then the processes' transition probability densities satisfy the Fokker-Planck-Kolmogorov (FPK) equation -- an ordinary partial differential equation (PDE). Thus there is a mathematical inter-relationship that allows solutions of SDEs to be determined from the solution of a noise free differential equation which has been extensively studied since the 1920s. The main numerical solution technique employed to solve the FPK equation is the classical Finite Element Method (FEM). The FEM is of particular importance to engineers when used to solve FPK systems that describe noisy oscillators. The FEM is a powerful tool but is limited in that it is cumbersome when applied to multidimensional systems and can lead to large and complex matrix systems with their inherent solution and storage problems. I show in this thesis that the stochastic Taylor series (TS) based time discretisation approach to the solution of SDEs is an efficient and accurate technique that provides transition and steady state solutions to the associated FPK equation. The TS approach to the solution of SDEs has certain advantages over the classical techniques. These advantages include their ability to effectively tackle stiff systems, their simplicity of derivation and their ease of implementation and re-use. Unlike the FEM approach, which is difficult to apply in even only two dimensions, the simplicity of the TS approach is independant of the dimension of the system under investigation. Their main disadvantage, that of requiring a large number of simulations and the associated CPU requirements, is countered by their underlying structure which makes them perfectly suited for use on the now prevalent parallel or distributed processing systems. In summary, l will compare the TS solution of SDEs to the solution of the associated FPK equations using the classical FEM technique. One, two and three dimensional FPK systems that describe noisy oscillators have been chosen for the analysis. As higher dimensional FPK systems are rarely mentioned in the literature, the TS approach will be extended to essentially infinite dimensional systems through the solution of stochastic PDEs. In making these comparisons, the advantages of modern computing tools such as computer algebra systems and simulation software, when used as an adjunct to the solution of SDEs or their associated FPK equations, are demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Araujo, Páscoa and Torres-Martínez (2002) showed that, without imposing any debt constraint, Ponzi schemes are ruled out in infinite horizon economies with limited commitment when collateral is the only mechanism that partially secures loans. Páscoa and Seghir (2009) presented two examples in which they argued that Ponzi schemes may reappear if, additionally to the seizure of the collateral, there are sufficiently harsh default penalties assessed (directly in terms of utility) against the defaulters. Moreover, they claimed that if default penalties are moderate then Ponzi schemes are ruled out and existence of a competitive equilibrium is restored. This paper questions the validity of the claims made in Páscoa and Seghir (2009). First, we show that it is not true that harsh default penalties lead to Ponzi schemes in the examples they have proposed. A competitive equilibrium with no trade can be supported due to unduly pessimistic expectations on asset deliveries. We subsequently refine the equilibrium concept in the spirit of Dubey, Geanakoplos and Shubik (2005) in order to rule out spurious inactivity on asset markets due to irrational expectations. Our second contribution is to provide a specific example of an economy with moderate default penalties in which Ponzi schemes reappear when overpessimistic beliefs on asset deliveries are ruled out. Our finding shows that, contrary to what is claimed by Páscoa and Seghir (2009), moderate default penalties do not always prevent agents to run a Ponzi scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Operator bases are discussed in connection with the construction of phase space representatives of operators in finite-dimensional spaces, and their properties are presented. It is also shown how these operator bases allow for the construction of a finite harmonic oscillator-like coherent state. Creation and annihilation operators for the Fock finite-dimensional space are discussed and their expressions in terms of the operator bases are explicitly written. The relevant finite-dimensional probability distributions are obtained and their limiting behavior for an infinite-dimensional space are calculated which agree with the well known results. (C) 1996 Academic Press, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the Lorenz system ẋ = σ(y - x), ẏ = rx - y - xz and ż = -bz + xy; and the Rössler system ẋ = -(y + z), ẏ = x + ay and ż = b - cz + xz. Here, we study the Hopf bifurcation which takes place at q± = (±√br - b,±√br - b, r - 1), in the Lorenz case, and at s± = (c+√c2-4ab/2, -c+√c2-4ab/2a, c±√c2-4ab/2a) in the Rössler case. As usual this Hopf bifurcation is in the sense that an one-parameter family in ε of limit cycles bifurcates from the singular point when ε = 0. Moreover, we can determine the kind of stability of these limit cycles. In fact, for both systems we can prove that all the bifurcated limit cycles in a neighborhood of the singular point are either a local attractor, or a local repeller, or they have two invariant manifolds, one stable and the other unstable, which locally are formed by two 2-dimensional cylinders. These results are proved using averaging theory. The method of studying the Hopf bifurcation using the averaging theory is relatively general and can be applied to other 3- or n-dimensional differential systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vertex operators in string theory me in two varieties: integrated and unintegrated. Understanding both types is important for the calculation of the string theory amplitudes. The relation between them is a descent procedure typically involving the b-ghost. In the pure spinor formalism vertex operators can be identified as cohomology classes of an infinite-dimensional Lie superalgebra formed by covariant derivatives. We show that in this language the construction of the integrated vertex from an unintegrated vertex is very straightforward, and amounts to the evaluation of the cocycle on the generalized Lax currents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A multiseries integrable model (MSIM) is defined as a family of compatible flows on an infinite-dimensional Lie group of N-tuples of formal series around N given poles on the Riemann sphere. Broad classes of solutions to a MSIM are characterized through modules over rings of rational functions, called asymptotic modules. Possible ways for constructing asymptotic modules are Riemann-Hilbert and ∂̄ problems. When MSIM's are written in terms of the group coordinates, some of them can be contracted into standard integrable models involving a small number of scalar functions only. Simple contractible MSIM's corresponding to one pole, yield the Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy. Two-pole contractible MSIM's are exhibited, which lead to a hierarchy of solvable systems of nonlinear differential equations consisting of (2 + 1) -dimensional evolution equations and of quite strong differential constraints. © 1989 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we study the continuity of invariant sets for nonautonomous infinite-dimensional dynamical systems under singular perturbations. We extend the existing results on lower-semicontinuity of attractors of autonomous and nonautonomous dynamical systems. This is accomplished through a detailed analysis of the structure of the invariant sets and its behavior under perturbation. We prove that a bounded hyperbolic global solutions persists under singular perturbations and that their nonlinear unstable manifold behave continuously. To accomplish this, we need to establish results on roughness of exponential dichotomies under these singular perturbations. Our results imply that, if the limiting pullback attractor of a nonautonomous dynamical system is the closure of a countable union of unstable manifolds of global bounded hyperbolic solutions, then it behaves continuously (upper and lower) under singular perturbations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Chafee-Infante equation is one of the canonical infinite-dimensional dynamical systems for which a complete description of the global attractor is available. In this paper we study the structure of the pullback attractor for a non-autonomous version of this equation, u(t) = u(xx) + lambda(xx) - lambda u beta(t)u(3), and investigate the bifurcations that this attractor undergoes as A is varied. We are able to describe these in some detail, despite the fact that our model is truly non-autonomous; i.e., we do not restrict to 'small perturbations' of the autonomous case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present thesis is concerned with certain aspects of differential and pseudodifferential operators on infinite dimensional spaces. We aim to generalize classical operator theoretical concepts of pseudodifferential operators on finite dimensional spaces to the infinite dimensional case. At first we summarize some facts about the canonical Gaussian measures on infinite dimensional Hilbert space riggings. Considering the naturally unitary group actions in $L^2(H_-,gamma)$ given by weighted shifts and multiplication with $e^{iSkp{t}{cdot}_0}$ we obtain an unitary equivalence $F$ between them. In this sense $F$ can be considered as an abstract Fourier transform. We show that $F$ coincides with the Fourier-Wiener transform. Using the Fourier-Wiener transform we define pseudodifferential operators in Weyl- and Kohn-Nirenberg form on our Hilbert space rigging. In the case of this Gaussian measure $gamma$ we discuss several possible Laplacians, at first the Ornstein-Uhlenbeck operator and then pseudo-differential operators with negative definite symbol. In the second case, these operators are generators of $L^2_gamma$-sub-Markovian semi-groups and $L^2_gamma$-Dirichlet-forms. In 1992 Gramsch, Ueberberg and Wagner described a construction of generalized Hörmander classes by commutator methods. Following this concept and the classical finite dimensional description of $Psi_{ro,delta}^0$ ($0leqdeltaleqroleq 1$, $delta< 1$) in the $C^*$-algebra $L(L^2)$ by Beals and Cordes we construct in both cases generalized Hörmander classes, which are $Psi^*$-algebras. These classes act on a scale of Sobolev spaces, generated by our Laplacian. In the case of the Ornstein-Uhlenbeck operator, we prove that a large class of continuous pseudodifferential operators considered by Albeverio and Dalecky in 1998 is contained in our generalized Hörmander class. Furthermore, in the case of a Laplacian with negative definite symbol, we develop a symbolic calculus for our operators. We show some Fredholm-criteria for them and prove that these Fredholm-operators are hypoelliptic. Moreover, in the finite dimensional case, using the Gaussian-measure instead of the Lebesgue-measure the index of these Fredholm operators is still given by Fedosov's formula. Considering an infinite dimensional Heisenberg group rigging we discuss the connection of some representations of the Heisenberg group to pseudo-differential operators on infinite dimensional spaces. We use this connections to calculate the spectrum of pseudodifferential operators and to construct generalized Hörmander classes given by smooth elements which are spectrally invariant in $L^2(H_-,gamma)$. Finally, given a topological space $X$ with Borel measure $mu$, a locally compact group $G$ and a representation $B$ of $G$ in the group of all homeomorphisms of $X$, we construct a Borel measure $mu_s$ on $X$ which is invariant under $B(G)$.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il formalismo Mathai-Quillen (MQ) è un metodo per costruire la classe di Thom di un fibrato vettoriale attraverso una forma differenziale di profilo Gaussiano. Lo scopo di questa tesi è quello di formulare una nuova rappresentazione della classe di Thom usando aspetti geometrici della quantizzazione Batalin-Vilkovisky (BV). Nella prima parte del lavoro vengono riassunti i formalismi BV e MQ entrambi nel caso finito dimensionale. Infine sfrutteremo la trasformata di Fourier “odd" considerando la forma MQ come una funzione definita su un opportuno spazio graduato.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We combine infinite dimensional analysis (in particular a priori estimates and twist positivity) with classical geometric structures, supersymmetry, and noncommutative geometry. We establish the existence of a family of examples of two-dimensional, twist quantum fields. We evaluate the elliptic genus in these examples. We demonstrate a hidden SL(2,ℤ) symmetry of the elliptic genus, as suggested by Witten.