STRUCTURE AND BIFURCATION OF PULLBACK ATTRACTORS IN A NON-AUTONOMOUS CHAFEE-INFANTE EQUATION


Autoria(s): Carvalho, A. N.; Langa, J. A.; Robinson, J. C.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

17/10/2013

17/10/2013

2012

Resumo

The Chafee-Infante equation is one of the canonical infinite-dimensional dynamical systems for which a complete description of the global attractor is available. In this paper we study the structure of the pullback attractor for a non-autonomous version of this equation, u(t) = u(xx) + lambda(xx) - lambda u beta(t)u(3), and investigate the bifurcations that this attractor undergoes as A is varied. We are able to describe these in some detail, despite the fact that our model is truly non-autonomous; i.e., we do not restrict to 'small perturbations' of the autonomous case.

CNPq

CNPq [302022/2008-2]

FAPESP (Brazil)

FAPESP, Brazil [2008/55516-3]

Ministerio de Ciencia e Innovacion [MTM2008-0088, PBH2006-0003-PC]

Ministerio de Ciencia e Innovacion

Junta de Andalucia, Spain

Junta de Andalucia, Spain [P07-FQM-02468, FQM314, HF2008-0039]

EPSRC

EPSRC [EP/G007470/1]

[CAPES/DGU 267/2008]

Identificador

PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, PROVIDENCE, v. 140, n. 7, pp. 2357-2373, 2012

0002-9939

http://www.producao.usp.br/handle/BDPI/35164

10.1090/S0002-9939-2011-11071-2

http://dx.doi.org/10.1090/S0002-9939-2011-11071-2

Idioma(s)

eng

Publicador

AMER MATHEMATICAL SOC

PROVIDENCE

Relação

PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY

Direitos

closedAccess

Copyright AMER MATHEMATICAL SOC

Palavras-Chave #DIFFERENTIAL-EQUATIONS #PERTURBATION #STABILITY #MATHEMATICS, APPLIED #MATHEMATICS
Tipo

article

original article

publishedVersion