896 resultados para Variational methods for second-order elliptic equations
Resumo:
Semi-similar solutions of the unsteady compressible laminar boundary layer flow over two-dimensional and axisymmetric bodies at the stagnation point with mass transfer are studied for all the second-order boundary layer effects when the free stream velocity varies arbitrarily with time. The set of partial differential equations governing the unsteady compressible second-order boundary layers representing all the effects are derived for the first time. These partial differential equations are solved numerically using an implicit finite-difference scheme. The results are obtained for two particular unsteady free stream velocity distributions: (a) an accelerating stream and (b) a fluctuating stream. It is observed that the total skin friction and heat transfer are strongly affected by the surface mass transfer and wall temperature. However, their variation with time is significant only for large times. The second-order boundary layer effects are found to be more pronounced in the case of no mass transfer or injection as compared to that for suction. Résumé Des solutions semi-similaires d'écoulement variable compressible de couche limite sur des corps bi-dimensionnels thermique, sont étudiées pour tous les effets de couche limite du second ordre, lorsque la vitesse de l'écoulement libre varie arbitrairement avec le temps. Le systéme d'équations aux dérivées partielles représentant tous les effets est écrit pour la premiére fois. On le résout numériquement á l'aide d'un schéma implicite aux différences finies. Les résultats sont obtenus pour deux cas de vitesse variable d'écoulement libre: (a) un écoulement accéléré et (b) un écoulement fluctuant. On observe que le frottement pariétal total et le transfert de chaleur sont fortement affectés par le transfert de masse et la température pariétaux. Néanmoins, leur variation avec le temps est sensible seulement pour des grandes durées. Les effets sont trouvés plus prononcés dans le cas de l'absence du transfert de masse ou de l'injection par rapport au cas de l'aspiration.
Resumo:
All the second-order boundary-layer effects on the unsteady laminar incompressible flow at the stagnation-point of a three-dimensional body for both nodal and saddle point regions have been studied. It has been assumed that the free-stream velocity, wall temperature and mass transfer vary arbitrarily with time. The effect of the Prandtl number has been taken into account. The partial differential equations governing the flow have been derived for the first time and then solved numerically unsteady free-stream velocity distributions, the nature of the using an implicit finite-difference scheme. It is found that the stagnation point and the mass transfer strongly affect the skin friction and heat transfer whereas the effects of the Prandtl number and the variation of the wall temperature with time are only on the heat transfer. The skin friction due to the combined effects of first- and second-order boundary layers is less than the skin friction due to, the first-order boundary layers whereas the heat transfer has the opposite behaviour. Suction increases the skin friction and heat transfer but injection does the opposite
Resumo:
Development of computationally efficient and accurate attitude rate estimation algorithm using low-cost commercially available star sensor arrays and processing unit for micro-satellite mission is presented. Our design reduces the computational load of least square (LS)-based rate estimation method while maintaining the same accuracy compared to other rate estimation approaches. Furthermore, rate estimation accuracy is improved by using recently developed fast and accurate second-order sliding mode observer (SOSMO) scheme. It also gives robust estimation in the presence of modeling uncertainties, unknown disturbances, and measurement noise. Simulation study shows that rate estimation accuracy achieved by our LS-based method is comparable with other methods for a typical commercially available star sensor array. The robustness analysis of SOSMO with respect to measurement noise is also presented in this paper. Simulation test bench for a practical scenario of satellite rate estimation uses moment-of-inertia variation and environmental disturbances affecting a typical micro-satellite at 500km circular orbit. Comparison studies of SOSMO with 1-SMO and pseudo-linear Kalman filter show that satisfactory estimation accuracy is achieved by SOSMO.
Resumo:
Part I
Numerical solutions to the S-limit equations for the helium ground state and excited triplet state and the hydride ion ground state are obtained with the second and fourth difference approximations. The results for the ground states are superior to previously reported values. The coupled equations resulting from the partial wave expansion of the exact helium atom wavefunction were solved giving accurate S-, P-, D-, F-, and G-limits. The G-limit is -2.90351 a.u. compared to the exact value of the energy of -2.90372 a.u.
Part II
The pair functions which determine the exact first-order wavefunction for the ground state of the three-electron atom are found with the matrix finite difference method. The second- and third-order energies for the (1s1s)1S, (1s2s)3S, and (1s2s)1S states of the two-electron atom are presented along with contour and perspective plots of the pair functions. The total energy for the three-electron atom with a nuclear charge Z is found to be E(Z) = -1.125•Z2 +1.022805•Z-0.408138-0.025515•(1/Z)+O(1/Z2)a.u.
Resumo:
Semi-implicit, second order temporal and spatial finite volume computations of the flow in a differentially heated rotating annulus are presented. For the regime considered, three cyclones and anticyclones separated by a relatively fast moving jet of fluid or "jet stream" are predicted. Two second order methods are compared with, first order spatial predictions, and experimental measurements. Velocity vector plots are used to illustrate the predicted flow structure. Computations made using second order central differences are shown to agree best with experimental measurements, and to be stable for integrations over long time periods (> 1000s). No periodic smoothing is required to prevent divergence.
Resumo:
On the basis of ZINDO methods,according to the sum - over - states( SOS) expression, we divise the program for the calculation of nonlinear second - order optical susceptibilities beta(ijk) and study how the different substituents on the phenyl ring attached to the atom silicon influence or; the nonlinear second - order optical properties for substituted silanes series molecules. The property of (CH3)(3)Si is Studied particularly. The effect of length of silica chains on the calculated beta values is studied too. The regularity summarized from calculated results has been explained micromechanically.
Resumo:
On the basis of AM1 and INDO/CI methods, we devise the program for the calculation of nonlinear second-order optical susceptibilities beta(ijk) and perform systematic theoretical studies on the nonlinear optical second-order properties of azobenzene series molecules, i. e. on the basis of [GRAPHICS] we induced different donors on the left side of phenyl ring, and different accepters on the right side of phenyl ring, and examined the rule of beta variation. The regularity summarized from the calculated results has been explained micromechanically. Finally, a molecule having a big nonlinear second-order optical susceptibility has been designed.
Resumo:
In this paper, internal waves in three-layer stratified fluid are investigated by using a perturbation method, and the second-order asymptotic solutions of the velocity potentials and the second-order Stokes solutions of the associated elevations of the interfacial waves are presented based on the small amplitude wave theory. As expected, the first-order solutions are consistent with ordinary linear theoretical results, and the second-order solutions describe the second-order modification on the linear theory and the interactions between the two interfacial waves. Both the first-order and second-order solutions derived depend on the depths and densities of the three-layer fluid. It is also noted that the solutions obtained from the present work include the theoretical results derived by Umeyama as special cases.
Resumo:
In the present research, the study of Song (2004) for random interfacial waves in two-layer fluid is extended to the case of fluids moving at different steady uniform speeds. The equations describing the random displacements of the density interface and the associated velocity potentials in two-layer fluid are solved to the second order, and the wave-wave interactions of the wave components and the interactions between the waves and currents are described. As expected, the extended solutions include those obtained by Song (2004) as one special case where the steady uniform currents of the two fluids are taken as zero, and the solutions reduce to those derived by Sharma and Dean (1979) for random surface waves if the density of the upper fluid and the current of the lower fluid are both taken as zero.
Resumo:
In this paper, the analytical representations of four wave source functions in high-frequency spectrum range are given on the basis of ocean wave theory and dimensional analysis, and the perturbation method is used to solve the governing equations of ocean wave high-frequency spectrum on the basis of the temporally stationary and locally homogeneous scale relations of microscale wave. The microscale ocean wavenumber spectrum correct to the second order has an explicit structure, its first order part represents the equilibrium between different source functions, and its second order part represents the contribution of microscale wave propagation.
Resumo:
Based on the second-order random wave solutions of water wave equations in finite water depth, statistical distributions of the depth- integrated local horizontal momentum components are derived by use of the characteristic function expansion method. The parameters involved in the distributions can be all determined by the water depth and the wave-number spectrum of ocean waves. As an illustrative example, a fully developed wind-generated sea is considered and the parameters are calculated for typical wind speeds and water depths by means of the Donelan and Pierson spectrum. The effects of nonlinearity and water depth on the distributions are also investigated.
Resumo:
Based on the second-order random wave solutions of water wave equations in finite water depth, a statistical distribution of the wave-surface elevation is derived by using the characteristic function expansion method. It is found that the distribution, after normalization of the wave-surface elevation, depends only on two parameters. One parameter describes the small mean bias of the surface produced by the second-order wave-wave interactions. Another one is approximately proportional to the skewness of the distribution. Both of these two parameters can be determined by the water depth and the wave-number spectrum of ocean waves. As an illustrative example, we consider a fully developed wind-generated sea and the parameters are calculated for various wind speeds and water depths by using Donelan and Pierson spectrum. It is also found that, for deep water, the dimensionless distribution reduces to the third-order Gram-Charlier series obtained by Longuet-Higgins [J. Fluid Mech. 17 (1963) 459]. The newly proposed distribution is compared with the data of Bitner [Appl. Ocean Res. 2 (1980) 63], Gaussian distribution and the fourth-order Gram-Charlier series, and found our distribution gives a more reasonable fit to the data. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
In the present paper, the random inter facial waves in N-layer density-stratified fluids moving at different steady uniform speeds are researched by using an expansion technique, and the second-order a symptotic solutions of the random displacements of the density interfaces and the associated velocity potentials in N-layer fluid are presented based on the small amplitude wave theory. The obtained results indicate that the wave-wave second-order nonlinear interactions of the wave components and the second-order nonlinear interactions between the waves and currents are described. As expected, the solutions include those derived by Chen (2006) as a special case where the steady uniform currents of the N-layer fluids are taken as zero, and the solutions also reduce to those obtained by Song (2005) for second-order solutions for random interfacial waves with steady uniform currents if N=2.
Resumo:
In this paper, interfacial waves in three-layer stratified fluid with background current are investigated using a perturbation method, and the second-order asymptotic solutions of the velocity potentials and the second-order Stokes wave solutions of the associated elevations of the interfacial waves are presented based on the small amplitude wave theory, and the Kelvin-Helmholtz instability of interfacial waves is studied. As expected, for three-layer stratified fluid with background current, the first-order asymptotic solutions (linear wave solutions), dispersion relation and the second-order asymptotic solutions derived depend on not only the depths and densities of the three-layer fluid but also the background current of the fluids, and the second-order Stokes wave solutions of the associated elevations of the interfacial waves describe not only the second-order nonlinear wave-wave interactions between the interfacial waves but also the second-order nonlinear interactions between the interfacial waves and currents. It is also noted that the solutions obtained from the present work include the theoretical results derived by Chen et al (2005) as a special case. It also shows that with the given wave number k (real number) the interfacial waves may show Kelvin-Helmholtz instability.