965 resultados para Sapphire substrates


Relevância:

60.00% 60.00%

Publicador:

Resumo:

High resistivity unintentionally doped GaN films were grown on (0001) sapphire substrates by metalorganic chemical vapor deposition. The surface morphology of the layer was measured by both atomic force microscopy and scanning electron microscopy. The results show that the films have mirror-like surface morphology with root mean square of 0.3 nm. The full width at half maximum of double crystal X-ray diffraction rocking curve for (0002) GaN is about 5.22 arc-min, indicative of high crystal quality. The resistivity of the GaN epilayers at room temperature and at 250 degrees C was measured to be approximate 10(9) and 10(6) Omega(.)cm respectively, by variable temperature Hall measurement. Deep level traps in the GaN epilayers were investigated by thermally stimulated current and resistivity measurements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Mass Analyzed Low Energy Dual Ion Beam Epitaxy (MALE-DIBE) system has been designed and constructed in our laboratory. We believe that the system, which was installed and came into full operation in 1988, is the first facility of this kind. With our system we have carried out studies, for the first time, on compound synthesis of GaN and CoSi2 epitaxial thin films. RHEED and AES results show that GaN films, which were deposited on Si and sapphire substrates, are monocrystalline and of good stoichiometry. To our knowledge, GaN film heteroepitaxially grown on Si. which is more lattice-mismatched than GaN on sapphire, has not been reported before by other authors. RBS and TEM investigations indicated a rather good crystallinity of CoSi2 with a distinct interface between CoSi2 and the Si substrate. The channelling minimum yield chi(min) from the Co profile is approximately 4%. The results showed that the DIBE system with simultaneous arrival of two beams at the target is particularly useful in the formation of novel compounds at a relatively low substrate temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Single-crystal GaN films have been deposited on (01 (1) over bar 2) sapphire substrates using trimethylgallium (TMGa) and NH3 as sources. The morphological, crystalline, electrical and optical characterizations of GaN film are investigated. The carrier concentration ofundoped GaN increases with decreasing input NH3-to-TMGa molar flow ratio.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Photoluminescence (PL) and temperature-dependent Hall effect measurements were carried out in (0001) and (11 (2) over bar0) AlGaN/GaN heterostructures grown on sapphire substrates by metalorganic chemical vapor deposition. There are strong spontaneous and piezoelectric electric fields (SPF) along the growth orientation of the (0001) AlGaN/GaN heterostructures. At the same time there are no corresponding SPF along that of the (1120) AlGaN/GaN. A strong PL peak related to the recombination between two-dimensional electron gas (2DEG) and photoexcited holes was observed at 3.258 eV at room temperature in (0001) AlGaN/GaN heterointerfaces while no corresponding PL peak was observed in (11 (2) over bar0). The existence of a 2DEG was observed in (0001) AlGaN/GaN multi-layers with a mobility saturated at 6000 cm(2)/V s below 80 K, whereas a much lower mobility was measured in (11 (2) over bar0). These results indicated that the SPF was the main element to cause the high mobility and high sheet-electron-density 2DEG in AlGaN/GaN heterostructures. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

GaN epilayers were grown on (0001) sapphire substrates by NH3-MBE and RF-MBE (radio frequency plasma). The polarities of the epilayers were investigated by in-situ RHEED, chemical solution etching and AFM surface examination. By using a RF-MBE grown GaN layer as template to deposit GaN epilayer by NH3-MBE method, we found that not only Ga-polarity GaN films were repeatedly obtained, but also the electron mobility of these Ga-polarity films was significantly improved with a best value of 290 cm(2)/V.s at room temperature. Experimental results show it is an easy and stable way for growth of high quality Ga-polarity GaN films.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydrogen behavior in unintentionally doped GaN epilayers on sapphire substrates grown by NH3-MBE is investigated. Firstly, we find by using nuclear reaction analysis (NRA) that with increasing hydrogen concentration the background electron concentration increases, which suggests that there exists a hydrogen-related donor in undoped GaN, Secondly, Fourier transform infrared (FTIR) absorption and X-ray photoelectron spectroscopy (XPS) reveal Further that hydrogen atom is bound to nitrogen atom in GaN with a local vibrational mode at about 3211 cm(-1) Hence, it is presumed that the hydrogen-related complex Ga. . .H-N is a hydrogen-related donor candidate partly responsible for high n-type background commonly observed in GaN films. Finally, Raman spectroscopy results of the epilayers show that ill addition to the expected compressive biaxial strain, in some cases GaN films suffer from serious tensile biaxial strain. This anomalous behavior has been well interpreted in terms of interstitial hydrogen lattice dilation. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High-quality GaN epilayers were consistently obtained using a home-made gas-sourer MBE system on sapphire substrates. Room-temperature electron mobility of the grown GaN film is 300 cm(2)/V s with a background electron concentration as low as 2 x 10(17) cm(-3) The full-width at half-maximum of the GaN (0 0 0 2) double-crystal X-ray rocking curve is 6 arcmin. At low temperature (3.5 K), the FWHM of the: near-band-edge photoluminescence emission line is 10 meV. Furthermore, using piezoelectric effect alone with the high-quality films, two-dimensional electron gas was formed in a GaN/AlN/GaN/sapphire structure. Its room-temperature and low-temperature (77 K) electron mobility is 680 cm(2)/V s and 1700 cm(2)/V s, and the corresponding sheet electron density is 3.2 x 10(13) and 2.6 x 10(13) cm(-2), respectively. (C) 2001 Published by Elsevier Science.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

GaN epilayers grown on pre-nitridated (0001) sapphire substrates by metallorganic vapor phase epitaxy were investigated by wavelength dispersive X-ray spectroscopy and energy dispersive S-ray spectroscopy. Precipitates were observed to mainly consist of O impurity whose strengths were weaker than surrounding matrix. The precipitates were larger in size and distributed more sparsely and inhomogeneously in < 11-20 > directions of the epilayers grown on substrates pre-nitridated for longer periods. The larger precipitates often joined to cracks in the TEM specimens. The crack formation seems to be attributed to the compressive stress concentration at edge angles of the larger precipitates. Yellow luminescence of the epilayers was imaged by cathodoluminescence. The distribution similarity between the cathodoluminescence and the precipitates suggested that the precipitates were responsible for the yellow luminescence band. (C) 2000 Elsevier Science S.A, All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

GaN epilayers grown on sapphire substrates nitridated for various lengthy periods were investigated by light scattering tomography (LST) and Raman scattering. In the LST images of the plane-view epilayers, the light scattering defects distribute in [<11(2)over bar 0>] directions. The defect density is lower in epilayer grown on substrate nitridated for a longer period. The defects are believed to be straight threading edge dislocations on {<1(1)over bar 00>} planes. The Raman shift of E-2 mode is larger in the sample grown on substrate nitridated for a longer period. Our results show that the stress is higher in the sample with fewer dislocations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

LiNbO3 thin films were grown on (0001) sapphire substrates by a chemical route, using the polymeric precursor method. The overall process consists of preparing a coating solution from the Pechini process, based on metallic citrate polymerization, the precursor films, deposited by dip coating, are then heat treated to eliminate the organic material and to synthesize the phase. In this work, we studied the influence of the heat treatment on the structural and optical properties of single-layered films. Two routes were also investigated to increase the film thickness: increasing the viscosity of the coating solution and/or increasing the number of successively deposited layers. The x-ray diffraction theta -2 theta scans revealed the c-axis orientation of the single- and multilayered films and showed that efficient crystallization can be obtained at temperatures as low as 400 degreesC, the phi-scan diffraction evidenced the epitaxial growth with two in-plane variants, A microstructural study revealed that the films were crack free, homogeneous, and relatively dense. Finally, the investigation of the optical properties (optical transmittance and refractive index) confirmed the good quality of the films. These results indicate that the polymeric precursor method is a promising process to develop lithium niobate waveguides.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The polymeric precursor method was used to prepare multi-layered LiNbO3 films. The overall process consists of preparing a coating solution from the Pechini process and the deposited film is subsequently heat-treated. Two-layered films were prepared by this process, onto (0001) sapphire substrates. Two different routes were investigated for the heat-treatment. The amorphous route consisted of performing, after each deposition, a pre-treatment at low temperature to eliminate the organic material. In this case, the crystallization heat-treatment was performed only after the two layers had been deposited. on the other hand, a process layer-after-layer crystallization was used. Both routes led to (0001) LiNbO3 oriented films. However, only the film prepared by the layer-after-layer crystallization presented an epitaxial growth and a crack-free morphology. Moreover, the layer-after-layer crystallization process led to a film exhibiting the best optical properties. (C) 2001 Elsevier B.V. Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polymeric precursor solution was used to deposit by spin-coating pure and Mg doped LiNbO3 thin films on sapphire substrates. The effects of magnesium addition on crystallinity, morphology and optical properties of the annealed films were investigated. X-ray diffraction patterns indicate the oriented growth of the films. AFM studies show that the films are very homogeneous, dense and present smooth surfaces. The refractive index and optical losses obtained by the prism coupling method were influenced by the magnesium addition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polymeric precursor solution was used to deposit LiNbO3 thin films by dip coating on sapphire substrates. The effects of processing variables, such as heat treatment conditions and number of deposited layers, on crystallinity and morphology of the final films were investigated. X-ray diffraction patterns show the oriented growth of the films. The rocking curves, obtained around the (006) LiNbO3 peak, revealed that the shape peak and the FWHM value were influenced by the processing variables. According to these parameters, some films presented very homogeneous dense and smooth surfaces, as shown by the SEM and AFM studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A polymeric precursor solution was used to deposit pure and Mg doped LiNbO3 thin films on sapphire substrates by spin-coating. The effects of magnesium addition on crystallinity, morphology and optical properties of the annealed films were investigated. X-ray diffraction patterns indicate the oriented growth of the films. Phi-scan diffraction evidenced the epitaxial growth with two in-plane variants. AFM studies show that the films are very homogeneous, dense and present smooth surfaces. The refractive index and optical losses obtained by the prism coupling method were influenced by the magnesium addition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The research reported in this dissertation investigates the impact of grain boundaries, film interface, and crystallographic orientation on the ionic conductivity of thin film Gd-doped CeO2 (GDC). Chapter 2 of this work addresses claims in the literature that submicron grain boundaries have the potential to dramatically increase the ionic conductivity of GDC films. Unambiguous testing of this claim requires directly comparing the ionic conductivity of single-crystal GDC films to films that are identical except for the presence of submicron grain boundaries. In this work techniques have been developed to grow GDC films by RF magnetron sputtering from a GDC target on single crystal r plane sapphire substrates. These techniques allow the growth of films that are single crystals or polycrystalline with 80 nm diameter grains. The ionic conductivities of these films have been measured and the data shows that the ionic conductivity of single crystal GDC is greater than that of the polycrystalline films by more than a factor of 4 over the 400-700°C temperature range. Chapter 3 of this work investigates the ionic conductivity of surface and interface regions of thin film Gd-doped CeO2. In this study, single crystal GDC films have been grown to thicknesses varying from 20 to 500 nm and their conductivities have been measured in the 500-700°C temperature range. Decreasing conductivity with decreasing film thickness was observed. Analysis of the conductivity data is consistent with the presence of an approximately 50 nm layer of less conductive material in every film. This study concludes that the surface and interface regions of thin film GDC are less conductive than the bulk single crystal regions, rather than being highly conductive paths. Chapter 4 of this work investigates the ionic conductivity of thin film Gd-doped CeO2 (GDC) as a function of crystallographic orientation. A theoretical expression has been developed for the ionic conductivity of the [100] and [110] directions in single crystal GDC. This relationship is compared to experimental data collected from a single crystal GDC film. The film was grown to a thickness of _300 nm and its conductivity measured along the [100] and [110] orientations in the 500-700°C temperature range. The experimental data shows no statistically significant difference in the conductivities of the [100] and [110] directions in single crystal GDC. This result agrees with the theoretical model which predicts no difference between the conductivities of the two directions.