955 resultados para Pulsed laser range finder
Resumo:
Beginning with a beam coherence polarization (BCP) matrix, we obtain an analytical intensity expression for radially polarized ultrashort pulsed laser beams that pass through an apertureless aplanatic lens. We also investigate the intensity distribution of radially polarized beams in the vicinity of the focus. The focal shift of these beams is studied in detail. The focal shift depends strongly on Z(F) that coincides with pi times the Fresnel number. (c) 2007 Optical Society of America.
Resumo:
Structural and optical properties were investigated for ZnO films grown on (100) and (001) gamma-LiAlO2 (LAO) substrates by pulsed laser deposition method. According XRD results, it is intuitionistic that (100) LAO is suitable for fabricating high quality ZnO film, while (001) LAO is unsuitable. The FWHM of XRD, stress in film and FWHM of UV PL spectra for ZnO films on (100) LAO show a decreasing with increasing substrate temperature from 300 to 600 degrees C. ZnO film fabricated at 600 degrees C has the greatest grain size, the smallest stress (0.47 Gpa) and PL FWHM value (similar to 85 meV). This means that the substrate temperature of 600 degrees C is optimum for ZnO film deposited on (100) LAO. Moreover, it was found that the UV PL spectra intensity of ZnO film is not only related to the grain size and stoichiometric, but also depends on the stress in the film.
Resumo:
Lattice-matched (Delta(a/a) = 1.8-3.4%) (001) LiGaO2 substrates have been employed for the first time to grow ZnO thin films by pulsed-laser deposition at 350-650 degrees C with oxygen partial pressure of 20Pa. XRD shows that a highly c-axis-oriented ZnO film can be deposited on (001) LiGaO2 substrate at 500 degrees C. AFM images reveal the surfaces of as-deposited ZnO films are smooth and root-mean-square values are 6.662, 5.765 and 6.834 nm at 350, 500 and 650 degrees C, respectively. PL spectra indicate only near-band-edge UV emission appears in the curve of ZnO film deposited at 500 degrees C. The deep-level emission of ZnO film deposited at 650 degrees C probably results from Li diffusion into the film. All the results illustrate substrate temperature plays a pretty important role in obtaining ZnO film with a high quality on LiGaO2 substrate by pulsed-laser deposition. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Zinc oxide (ZnO) thin films were grown on the beta-Ga2O3 (100) substrate by pulsed laser deposition (PLD). X-ray diffraction (XRD) indicated that the ZnO films are c-axis oriented. The optical and electrical properties of the films were investigated. The room temperature Photoluminescence (PL) spectrum showed a near band emission at 3.28 eV with two deep level emissions. Optical absorption indicated a visible exciton absorption at room temperature. The as-grown films had good electrical properties with the resistivities as low as 0.02 Omega cm at room temperature. Thus, beta-Ga2O3 (100) substrate is shown to be a suitable substrate for fabricating ZnO film. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Optical properties were investigated of ZnO thin films grown oil (100) gamma-LiAlO2 (LAO) substrates by pulsed laser deposition method. C-axis oriented ZnO film was grown oil (100) LAO substrate at the substrate temperature of 550 degrees C. The transmittances of the films were over 85%. Peaks attributed to excitons were seen in the absorption spectra, indicating that the thin films have high crystallinity. Photoluminescence spectra were observed at room temperature; the peak at 550 urn is ascribed to oxygen vacancies in the ZnO films caused by the diffusion of Li from the substrate into the film during deposition. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
About Phi 45 mm LiAlO2 single crystal was grown by Czochralski (Cz) technique. However, the full-width at half-maximum (FWHM) value was high to 116.9 arcsec. After three vapor transport equilibration (VTE) processes, we can obtain high-quality LiAlO2 slice with the FWHM value of 44.2 arcsec. ZnO films were fabricated on as-grown slices and after-VTE ones by pulsed laser deposition (PLD). It was found that ZnO films on the two slices have similar crystallinity, optical transmittance and optical band gap at room temperature. These results not only show that LAO substrate is suitable for ZnO growth, but also prove that the crystal quality of LAO substrate slightly affects the structural and optical properties of ZnO film.
Resumo:
Au nanoparticles, which were photoreduced by a Nd:YAG laser in HAuCl4 solution containing TiO2 colloid and accompanied by the TiO2 particles, were deposited on the substrate surface. The film consisting of Au/TiO2 particles was characterized by the absorption spectra, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The adhesion between the film and substrate was evaluated by using adhesive tape test. It was found that the presence of TiO2 dramatically enhanced the adhesion strength between the film and the substrate, as well as the deposition rate of film. The mechanism for the deposition of Au/TiO2 film was also discussed. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
ZnO thin films were deposited on the substrates of (100) gamma-LiAlO2 at 400, 550 and 700 degrees C using pulsed laser deposition (PLD) with the fixed oxygen pressure of 20 Pa, respectively. When the substrate temperature is 400 degrees C, the grain size of the film is less than 1 mu m observed by Leitz microscope and measured by X-ray diffraction (XRD). As the substrate temperature increases to 550 degrees C, highly-preferred c-orientation and high-quality ZnO film can be attained. While the substrate temperature rises to 700 degrees C, more defects appears on the surface of film and the ZnO films become polycrystalline again possibly because more Li of the substrate diffused into the ZnO film at high substrate temperature. The photoluminescence (PL) spectra of ZnO films at room temperature show the blue emission peaks centered at 430 nm. We suggest that the blue emission corresponds to the electron transition from the level of interstitial Zn to the valence band. Meanwhile, the films grown on gamma-LiAlO2 (LAO) exhibit green emission centered at 540 nm, which seemed to be ascribed to excess zinc and/or oxygen vacancy in the ZnO films caused by diffusion of Li. from the substrates into the films during the deposition.
Resumo:
Nonpolar a-plane (1 1 2 0) ZnO films are fabricated on (3 0 2)gamma-LiAlO2 substrate by pulsed laser deposition. When substrate temperature is low, c-plane ZnO is dominant. As growth temperature increases to similar to 500 degrees C, pure (1 1 2 0)-oriented ZnO film can be obtained. The X-ray rocking curve of a-plane ZnO film broadens sharply when growth temperature is up to similar to 650 degrees C; such a broadening may be related to the anisotropic lateral growth rate of (1 12 0)-oriented ZnO grains. Atomic force microscopy reveals the surface morphology changes of ZnO films deposited at different temperatures. Raman spectra reveal that a compressive stress exists in the a-plane ZnO film. (C) 2007 Published by Elsevier B.V.