977 resultados para Metal Transport


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurements and modeling of Cu2Se, Ag2Se, and Cu2S show that superionic conductors have great potential as thermoelectric materials. Cu2Se and Ag2Se are predicted to reach a zT of 1.2 at room temperature if their carrier concentrations can be reduced, and Cu-vacancy doped Cu2S reaches a maximum zT of 1.7 at 1000 K. Te-doped Ag2Se achieves a zT of 1.2 at 520 K, and could reach a zT of 1.7 if its carrier concentration could be reduced. However, superionic conductors tend to have high carrier concentrations due to the presence of metal defects. The carrier concentration has been found to be difficult to reduce by altering the defect concentration, therefore materials that are underdoped relative to the optimum carrier concentration are easier to optimize. The results of Te-doping of Ag2Se show that reducing the carrier concentration is possible by reducing the maximum Fermi level in the material.

Two new methods for analyzing thermoelectric transport data were developed. The first involves scaling the temperature-dependent transport data according to the temperature dependences expected of a single parabolic band model and using all of the scaled data to perform a single parabolic band analysis, instead of being restricted to using one data point per sample at a fixed temperature. This allows for a more efficient use of the transport data. The second involves scaling only the Seebeck coefficient and electrical conductivity. This allows for an estimate of the quality factor (and therefore the maximum zT in the material) without using Hall effect data, which are not always available due to time and budget constraints and are difficult to obtain in high-resistivity materials. Methods for solving the coherent potential approximation effective medium equations were developed in conjunction with measurements of the resistivity tensor elements of composite materials. This allows the electrical conductivity and mobility of each phase in the composite to be determined from measurements of the bulk. This points out a new method for measuring the pure-phase electrical properties in impure materials, for measuring the electrical properties of unknown phases in composites, and for quantifying the effects of quantum interactions in composites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

170 p.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Estudos têm mostrado que a intensificação do efeito estufa nos últimos anos vem ocasionando um aumento do aquecimento global com reflexos no clima que, por conseguinte, podem comprometer a vida no planeta. Tal intensificação se dá em função do acréscimo na concentração dos gases de efeito estufa proveniente de atividades antrópicas. Esta pesquisa visa quantificar a contribuição das emissões de gases do efeito estufa, lançados por uma empresa do setor metal-mecânico, situada no município do Rio de Janeiro RJ, além de propor cenários nos quais tais emissões podem ser compensadas. A quantificação foi concretizada através da utilização de metodologia elaborada pelo IPCC. A proposta de compensação das emissões se deu através da substituição de combustíveis utilizados em veículos, implantação de produção de energia por sistema fotovoltaico, biodigestão de efluentes domésticos e reflorestamento. A justificativa da pesquisa baseia-se na contribuição para a mitigação da intensificação do efeito estufa, do aquecimento global e das mudanças climáticas, o que conseqüentemente pode colaborar para a conservação da vida na Terra. Do total de emissões lançadas na atmosfera pela empresa em estudo, no ano de 2008, foi obtido um valor de 422 toneladas de CO2 equivalente, sendo 177 toneladas pelo consumo de combustíveis dos meios de transporte, 87 toneladas pelos resíduos gerados, 2,2 toneladas pelos efluentes gerados, 8,81 toneladas por consumo de energia elétrica e 148 toneladas por processos industriais internos. No cenário onde se contempla as medidas mitigadoras, tais emissões são reduzidas a 349 toneladas de CO2 equivalente. Caso seja empregado o reflorestamento como única forma de neutralização total de emissões da empresa em estudo, faz-se necessária a recuperação vegetal de uma área com 1,33 hectares de extensão. Esta alternativa pode se mostrar vantajosa em curto prazo por não acarretar maiores modificações na rotina dos processos industriais. No entanto, caso a Metal Master opte apenas pelo reflorestamento e mantenha o padrão de emissões semelhante ao ano de 2008, ao longo dos anos, será necessária uma vasta extensão de território reflorestado em relação aos valores pré-estabelecidos. Este fato denota a importância de modificações no ambiente industrial, de modo a permitir a neutralização em longo prazo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have grown epitaxially orientation-controlled monoclinic VO2 nanowires without employing catalysts by a vapor-phase transport process. Electron microscopy results reveal that single crystalline VO2 nanowires having a [100] growth direction grow laterally on the basal c plane and out of the basal r and a planes of sapphire, exhibiting triangular and rectangular cross sections, respectively. In addition, we have directly observed the structural phase transition of single crystalline VO2 nanowires between the monoclinic and tetragonal phases which exhibit insulating and metallic properties, respectively, and clearly analyzed their corresponding relationships using in situ transmission electron microscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spin information processing is a possible new paradigm for post-CMOS (complementary metal-oxide semiconductor) electronics and efficient spin propagation over long distances is fundamental to this vision. However, despite several decades of intense research, a suitable platform is still wanting. We report here on highly efficient spin transport in two-terminal polarizer/analyser devices based on high-mobility epitaxial graphene grown on silicon carbide. Taking advantage of high-impedance injecting/detecting tunnel junctions, we show spin transport efficiencies up to 75%, spin signals in the mega-ohm range and spin diffusion lengths exceeding 100μm. This enables spintronics in complex structures: devices and network architectures relying on spin information processing, well beyond present spintronics applications, can now be foreseen. © 2012 Macmillan Publishers Limited. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is widely reported that threshold voltage and on-state current of amorphous indium-gallium-zinc-oxide bottom-gate thin-film transistors are strongly influenced by the choice of source/drain contact metal. Electrical characterisation of thin-film transistors indicates that the electrical properties depend on the type and thickness of the metal(s) used. Electron transport mechanisms and possibilities for control of the defect state density are discussed. Pilling-Bedworth theory for metal oxidation explains the interaction between contact metal and amorphous indium-gallium-zinc-oxide, which leads to significant trap formation. Charge trapping within these states leads to variable capacitance diode-like behavior and is shown to explain the thin-film transistor operation. © 2013 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using self-consistent calculations of million-atom Schrodinger-Poisson equations, we investigate the I-V characteristics of tunnelling and ballistic transport of nanometer metal oxide semiconductor field effect transistors (MOSFET) based on a full 3-D quantum mechanical simulation under nonequilibtium condition. Atomistic empirical pseudopotentials are used to describe the device Hamiltonian and the underlying bulk band structure. We find that the ballistic transport dominates the I-V characteristics, whereas the effects of tunnelling cannot be neglected with the maximal value up to 0.8mA/mu m when the channel length of MOSFET scales down to 25 nm. The effects of tunnelling transport lower the threshold voltage V-t. The ballistic current based on fully 3-D quantum mechanical simulation is relatively large and has small on-off ratio compared with results derived from the calculation methods of Luo et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analytical model for the spin filtering transport in a ferromagnetic-metal - Al2O3 - n-type semiconductor tunneling structure has been developed, and demonstrated that the ratio of the helicity-modulated photo-response to the chopped one is proportional to the sum of the relative asymmetry in conductance of two opposite spin-polarized tunneling channels and the MCD effect of the ferromagnetic metal film. The performed measurement in an iron-metal/Al2O3/n-type GaAs tunneling structure under the optical spin orientation has verified that all the aspects of the experimental results are very well in accordance with our model in the regime of the spin filtering. After the MCD effect of the iron film is calibrated by an independent measurement, the physical quantity of Delta G(t)/G(t) (Delta G(t) = G(t)(up arrow) - G(t)(down arrow) is the difference of the conductance between two opposite spin tunneling channels, G(t) =( G(t)(up arrow) + G(t)(down arrow))/2 the averaged tunneling conductance), which concerns us most, can be determined quantitatively with a high sensitivity in the framework of our analytical model. Copyright (c) EPLA, 2008.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The atomistic pseudopotential quantum mechanical calculations are used to study the transport in million atom nanosized metal-oxide-semiconductor field-effect transistors. In the charge self-consistent calculation, the quantum mechanical eigenstates of closed systems instead of scattering states of open systems are calculated. The question of how to use these eigenstates to simulate a nonequilibrium system, and how to calculate the electric currents, is addressed. Two methods to occupy the electron eigenstates to yield the charge density in a nonequilibrium condition are tested and compared. One is a partition method and another is a quasi-Fermi level method. Two methods are also used to evaluate the current: one uses the ballistic and tunneling current approximation, another uses the drift-diffusion method. (C) 2009 American Institute of Physics. [doi:10.1063/1.3248262]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

InGaN based light emitting devices (LEDs) with asymmetric coupled quantum wells (AS-QWs) and conventional symmetric coupled quantum wells (CS-QWs) active structures were grown by metal-organic chemical vapor deposition technique. The LEDs with AS-QWs active region show improved light emission intensity and reduced forward voltage compared with LEDs with CS-QWs active region. Based on the electroluminescence measurements and the devices structure analysis, it can be concluded that these improvements are mainly attributed to the efficient hole tunneling through barriers and consequently the uniform distribution of carriers in the AS-QWs. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3254232]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mesoscopic Coulomb blockade system with two transport channels is studied in terms of full counting statistics. It is found that the shot noise and skewness are crucially affected by the quantum mechanical interference. In particular, the super-Poisson behavior can be induced as a consequence of constructive interference, and can be understood by the formation of effective fast-and-slow transport channels. Dephasing and finite temperature effects are carried out together with physical interpretations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the spin-dependent electron transport in a special magnetic-electric superlattice periodically modulated by parallel ferromagnetic metal stripes and Schottky normal-metal stripes. The results show that, the spin-polarized current can be well controllable by modulating the magnetic strength of the ferromagnetic stripes or the voltage applied to the Schottky normal-metal stripes. It is obvious that, to the system of the magnetic superlattice, the polarized current can be enhanced by the magnetic strength of ferromagnetic stripes. Nevertheless, it is found that, for the magnetic-electric superlattice, the polarized current can also be remarkably advanced by the voltage applied to the Schottky normal-metal stripes. These results may indicate a useable approach for tunable spintronic devices. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic structures, Rashba spin-orbit couplings, and transport properties of InSb nanowires and nanofilms are investigated theoretically. When both the radius of the wire (or the thickness of the film) and the electric field are large, the electron bands and hole bands overlap, and the Fermi level crosses with some bands, which means that the semiconductors transit into metals. Meanwhile, the Rashba coefficients behave in an abnormal way. The conductivities increase dramatically when the electric field is larger than a critical value. This semiconductor-metal transition is observable at the room temperature. (c) 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structural property of InN films grown on Ga-face GaN layers by metal-organic chemical vapor deposition has been studied by high-resolution x-ray diffraction. The mosaic tilt and twist are found to be strongly dependent on the surface lateral grain size. The twist decreases with increasing grain size and finally approaches to a constant level. On the other hand, the mosaic tilt increases substantially when the grain size becomes large enough and exceeds the width of step terraces on the GaN surface, showing an important mechanism for the defect generation in the InN/GaN system with large out-of-plane lattice mismatch. (c) 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new metal-free organic sensitizer (see figure) for high-performance and applicable dye-sensitized solar cells is presented. In combination with a solvent-free ionic liquid electrolyte, a similar to 7% cell made with this sensitizer shows all excellent stability measured under thermal and light-soaking dual stress. For the first time a 4.8% efficiency is reached for all-solid-state dye-sensitized solar cells based oil all organic dye.