982 resultados para Liquid-contact electrodes
Resumo:
A new mathematical model is proposed for the spreading of a liquid film on a solid surface. The model is based on the standard lubrication approximation for gently sloping films (with the no-slip condition for the fluid at the solid surface) in the major part of the film where it is not too thin. In the remaining and relatively small regions near the contact lines it is assumed that the so-called autonomy principle holds—i.e., given the material components, the external conditions, and the velocity of the contact lines along the surface, the behavior of the fluid is identical for all films. The resulting mathematical model is formulated as a free boundary problem for the classical fourth-order equation for the film thickness. A class of self-similar solutions to this free boundary problem is considered.
Resumo:
The transition from tunneling to metallic contact between two surfaces does not always involve a jump, but can be smooth. We have observed that the configuration and material composition of the electrodes before contact largely determine the presence or absence of a jump. Moreover, when jumps are found preferential values of conductance have been identified. Through a combination of experiments, molecular dynamics, and first-principles transport calculations these conductance values are identified with atomic contacts of either monomers, dimers, or double-bond contacts.
Resumo:
The process of creating an atomically defined and robust metallic tip is described and quantified using measurements of contact conductance between gold electrodes and numerical simulations. Our experiments show how the same conductance behavior can be obtained for hundreds of cycles of formation and rupture of the nanocontact by limiting the indentation depth between the two electrodes up to a conductance value of approximately 5G0 in the case of gold. This phenomenon is rationalized using molecular dynamics simulations together with density functional theory transport calculations which show how, after repeated indentations (mechanical annealing), the two metallic electrodes are shaped into tips of reproducible structure. These results provide a crucial insight into fundamental aspects relevant to nanotribology or scanning probe microscopies.
Resumo:
We have studied experimentally jump-to-contact (JC) and jump-out-of-contact (JOC) phenomena in gold electrodes. JC can be observed at first contact when two metals approach each other, while JOC occurs in the last contact before breaking. When the indentation depth between the electrodes is limited to a certain value of conductance, a highly reproducible behaviour in the evolution of the conductance can be obtained for hundreds of cycles of formation and rupture. Molecular dynamics simulations of this process show how the two metallic electrodes are shaped into tips of a well-defined crystallographic structure formed through a mechanical annealing mechanism. We report a detailed analysis of the atomic configurations obtained before contact and rupture of these stable structures and obtained their conductance using first-principles quantum transport calculations. These results help us understand the values of conductance obtained experimentally in the JC and JOC phenomena and improve our understanding of atomic-sized contacts and the evolution of their structural characteristics.
Resumo:
A novel method is reported, whereby screen-printed electrodes (SPELs) are combined with dispersive liquid–liquid microextraction. In-situ ionic liquid (IL) formation was used as an extractant phase in the microextraction technique and proved to be a simple, fast and inexpensive analytical method. This approach uses miniaturized systems both in sample preparation and in the detection stage, helping to develop environmentally friendly analytical methods and portable devices to enable rapid and onsite measurement. The microextraction method is based on a simple metathesis reaction, in which a water-immiscible IL (1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [Hmim][NTf2]) is formed from a water-miscible IL (1-hexyl-3-methylimidazolium chloride, [Hmim][Cl]) and an ion-exchange reagent (lithium bis[(trifluoromethyl)sulfonyl]imide, LiNTf2) in sample solutions. The explosive 2,4,6-trinitrotoluene (TNT) was used as a model analyte to develop the method. The electrochemical behavior of TNT in [Hmim][NTf2] has been studied in SPELs. The extraction method was first optimized by use of a two-step multivariate optimization strategy, using Plackett–Burman and central composite designs. The method was then evaluated under optimum conditions and a good level of linearity was obtained, with a correlation coefficient of 0.9990. Limits of detection and quantification were 7 μg L−1 and 9 μg L−1, respectively. The repeatability of the proposed method was evaluated at two different spiking levels (20 and 50 μg L−1), and coefficients of variation of 7 % and 5 % (n = 5) were obtained. Tap water and industrial wastewater were selected as real-world water samples to assess the applicability of the method.
Resumo:
A novel approach is presented, whereby gold nanostructured screen-printed carbon electrodes (SPCnAuEs) are combined with in-situ ionic liquid formation dispersive liquid–liquid microextraction (in-situ IL-DLLME) and microvolume back-extraction for the determination of mercury in water samples. In-situ IL-DLLME is based on a simple metathesis reaction between a water-miscible IL and a salt to form a water-immiscible IL into sample solution. Mercury complex with ammonium pyrrolidinedithiocarbamate is extracted from sample solution into the water-immiscible IL formed in-situ. Then, an ultrasound-assisted procedure is employed to back-extract the mercury into 10 µL of a 4 M HCl aqueous solution, which is finally analyzed using SPCnAuEs. Sample preparation methodology was optimized using a multivariate optimization strategy. Under optimized conditions, a linear range between 0.5 and 10 µg L−1 was obtained with a correlation coefficient of 0.997 for six calibration points. The limit of detection obtained was 0.2 µg L−1, which is lower than the threshold value established by the Environmental Protection Agency and European Union (i.e., 2 µg L−1 and 1 µg L−1, respectively). The repeatability of the proposed method was evaluated at two different spiking levels (3 and 10 µg L−1) and a coefficient of variation of 13% was obtained in both cases. The performance of the proposed methodology was evaluated in real-world water samples including tap water, bottled water, river water and industrial wastewater. Relative recoveries between 95% and 108% were obtained.
Resumo:
The formation and rupture of atomic-sized contacts is modelled by means of molecular dynamics simulations. Such nano-contacts are realized in scanning tunnelling microscope and mechanically controlled break junction experiments. These instruments routinely measure the conductance across the nano-sized electrodes as they are brought into contact and separated, permitting conductance traces to be recorded that are plots of conductance versus the distance between the electrodes. One interesting feature of the conductance traces is that for some metals and geometric configurations a jump in the value of the conductance is observed right before contact between the electrodes, a phenomenon known as jump-to-contact. This paper considers, from a computational point of view, the dynamics of contact between two gold nano-electrodes. Repeated indentation of the two surfaces on each other is performed in two crystallographic orientations of face-centred cubic gold, namely (001) and (111). Ultimately, the intention is to identify the structures at the atomic level at the moment of first contact between the surfaces, since the value of the conductance is related to the minimum cross-section in the contact region. Conductance values obtained in this way are determined using first principles electronic transport calculations, with atomic configurations taken from the molecular dynamics simulations serving as input structures.
Resumo:
The determination of the potentials of zero total and free charge, pztc and pzfc respectively, were made in a wide pH range by using the CO displacement method and the same calculation assumptions used previously for Pt(1 1 1) electrodes in contact with non-specifically adsorbing anions. Calculation of the pzfc involves, in occasions, long extrapolations that lead us to the introduction of the concept of potential of zero extrapolated charge (pzec). It was observed that the pztc changes with pH but the pzec is independent of this parameter. It was observed that the pztc > pzec at pH > 3.4 but the opposite is true for pH > 3.4. At the latter pH both pzec and pztc coincide. This defines two different pH regions and means that adsorbed hydrogen has to be corrected in the “acidic” solutions at the pztc while adsorbed OH is the species to be corrected in the “alkaline” range. The comparison of the overall picture suggests that neutral conditions at the interface are attained at significantly acidic solutions than those at the bulk.
Resumo:
Nucleation is the first step in granulation where the powder and liquid first contact. Two types of nucleation in wet granulation processes are proposed. Drop controlled nucleation, where one drop forms one nucleus, occurs when drops hitting the powder surface do not overlap (low spray flux Psi(a)) and the drop must wet quickly into the bed (short drop penetration time t(p)). If either criterion is not met, powder mixing characteristics will dominate (mechanical dispersion regime). Granulation experiments were performed with lactose powder, water, PEG200, and 7% HPC solution in a 6 L and a 25 L mixer granulator. Size distributions were measured as the drop penetration time and spray flux were varied. At short penetration times, decreasing Psi(a) caused the nuclei distribution to become narrower. When drop penetration time was high, the nuclei size distribution was broad independent of changes in dimensionless spray flux. Nucleation regime maps were plotted for each set of experiments in each mixer as a function of the dimensionless distribution width delta. The nucleation regime map demonstrates the interaction between drop penetration time and spray flux in nucleation. The narrowest distribution consistently occurred at low spray flux and low penetration time, proving the existence of the drop controlled regime. The nucleation regime map provides a rational basis for design and scale-up of nucleation and wetting in wet granulation.
Resumo:
An investigation was carried out into the galvanic corrosion of magnesium alloy AZ91D in contact with zinc, aluminium alloy A380 and 4150 steel. Specially designed test panels were used to measure galvanic currents under salt spray conditions. It was found that the distributions of the galvanic current densities on AZ91D and on the cathodes were different. An insulating spacer between the AZ91D anode and the cathodes could not eliminate galvanic corrosion. Steel was the worst cathode and aluminium the least aggressive to AZ91D. Corrosion products from the anode and cathodes appeared to be able to affect the galvanic corrosion process through an alkalisation, passivation, poisoning effect or shortcut effect. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Chaotic orientations of a top containing a fluid filled cavity are investigated analytically and numerically under small perturbations. The top spins and rolls in nonsliding contact with a rough horizontal plane and the fluid in the ellipsoidal shaped cavity is considered to be ideal and describable by finite degrees of freedom. A Hamiltonian structure is established to facilitate the application of Melnikov-Holmes-Marsden (MHM) integrals. In particular, chaotic motion of the liquid-filled top is identified to be arisen from the transversal intersections between the stable and unstable manifolds of an approximated, disturbed flow of the liquid-filled top via the MHM integrals. The developed analytical criteria are crosschecked with numerical simulations via the 4th Runge-Kutta algorithms with adaptive time steps.
Resumo:
Interaction of liquid copper with sintered iron is important in brazing, liquid phase sintering and infiltration. In brazing, the penetration of liquid copper into the pores is to be `avoided', whereas in infiltration processes it is `encouraged', and in liquid phase sintering it should be `controlled' so that optimum mechanical properties are achieved. The main objective of the research is to model the interaction by studying the effect of the process variables on the mechanisms of copper interaction in Fe-Cu and Fe-Cu-C systems. This involves both theoretical and experimental considerations. Dilatometric investigations at 950, 1125 and 1200oC, together with metallographic analyses were carried out to clarify the copper growth phenomenon. It is shown that penetration of liquid copper into the iron grain boundaries is the major cause of dimensional changes. Infiltration profiles revealed that copper penetration between the iron interparticle contact points and along iron grain boundaries is a rapid process. The extent of copper penetration depends on the dihedral angle. Large dihedral angles hinder, and small angles promote copper penetration into the grain boundaries. Dihedral angle analysis shows that the addition of 0.6wt.% graphite reduces the number of zero dihedral angle from 27 to 3o and increases the mean dihedral angle from 9.8 to 41.5o. The dihedral angle was lowest at 1125oC and then increased to higher values as the system approached its equilibrium condition. Elementally mixed (E.M.) Fe-Cu compacts showed a rapid expansion at the copper melting point. However, graphite additions reduced compact growth by increasing the mean dihedral angle. In order to reduce the copper growth phenomenon, iron powder was coated with a thin layer of copper by an immersion coating (I.C.) technique. The dilatometric curves revealed an overall shrinkage in the I.C. compacts compared to their corresponding E.M. compacts. Multiple regression models showed that temperature had the most effect on dimensional changes and density had the most contributing effect upon the copper penetration area in the infiltrated powder metallurgy compacts.
Resumo:
Gastro-oesophageal Reflux Disease (GORD), is generally caused by excess gastric reflux back to the oesophagus where damage to the mucosa results in injury. GORD is a very common disease in western countries, more than a quarter of western people are suffering from this disease and there is a trend that the percentage population in eastern countries who are diagnosed as GORD is increasing. GORD and its complications damage the quality of life and can lead to serious oesophageal diseases including Barrett’s disease and oesophageal carcinoma. Sodium alginate dissolved in water forms a viscous liquid and can coat on oesophageal mucosa for a period of time. In this study the ability of the liquid alginate to adhere to the oesophageal mucosa was investigated and the factors that affect this retention were examined. The potential of this liquid alginate as a drug delivery vehicle to extend the duration of contact with the oesophageal mucosa was confirmed by this study. The capacity of an alginate coating to retard acid and pepsin diffusion, the two main aggressive factors in gastric reflux, was investigated. A significant reduction in acid and pepsin diffusion by alginate gel layer was demonstrated in this project, indicating that alginate has great potential to protect against damage caused by acidic reflux. A novel method was introduced using an independent score system to assess the protection of oesophageal tissue by a coating of liquid alginate using microscopy as a technique. This technique demonstrated that alginate can protect the oesophageal epithelial tissue from the damage caused by gastric acid and pepsin. Many techniques were used in this study. The experimental results suggested that liquid sodium alginate is a very promising candidate in treating local oesophageal diseases through forming a coating on the oesophageal mucosal surface, retarding the diffusion of components of gastric refluxate and thus reducing the contact of these noxious factors with the epithelium and minimising injury.