Understanding the structure of the first atomic contact in gold
Contribuinte(s) |
Universidad de Alicante. Departamento de Física Aplicada Grupo de Nanofísica Física de la Materia Condensada |
---|---|
Data(s) |
28/10/2013
28/10/2013
29/05/2013
|
Resumo |
We have studied experimentally jump-to-contact (JC) and jump-out-of-contact (JOC) phenomena in gold electrodes. JC can be observed at first contact when two metals approach each other, while JOC occurs in the last contact before breaking. When the indentation depth between the electrodes is limited to a certain value of conductance, a highly reproducible behaviour in the evolution of the conductance can be obtained for hundreds of cycles of formation and rupture. Molecular dynamics simulations of this process show how the two metallic electrodes are shaped into tips of a well-defined crystallographic structure formed through a mechanical annealing mechanism. We report a detailed analysis of the atomic configurations obtained before contact and rupture of these stable structures and obtained their conductance using first-principles quantum transport calculations. These results help us understand the values of conductance obtained experimentally in the JC and JOC phenomena and improve our understanding of atomic-sized contacts and the evolution of their structural characteristics. This work was supported by the Spanish government through grants FIS2010-21883, CONSOLIDER CSD2007-0010, Generalitat Valenciana through PROMETEO/2012/011, ACOMP/2012/127 and Feder funds from E.U. |
Identificador |
SABATER, Carlos, et al. “Understanding the structure of the first atomic contact in gold”. Nanoscale Research Letters. 2013, 8:257. doi:10.1186/1556-276X-8-257 1931-7573 (Print) 1556-276X (Online) http://hdl.handle.net/10045/33519 10.1186/1556-276X-8-257 |
Idioma(s) |
eng |
Publicador |
Springer |
Relação |
http://dx.doi.org/10.1186/1556-276X-8-257 |
Direitos |
© 2013 Sabater et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. info:eu-repo/semantics/openAccess |
Palavras-Chave | #Electronic transport #Atomic size contacts #Mechanical annealing #Jump-to-contact phenomena #Jump-out-of-contact phenomena #Molecular dynamics simulations #Ab initio #DFT #Física Aplicada #Física de la Materia Condensada |
Tipo |
info:eu-repo/semantics/article |