919 resultados para LOCAL-STRUCTURE
Resumo:
Inter-domain linkers (IDLs)' bridge flanking domains and support inter-domain communication in multi-domain proteins. Their sequence and conformational preferences enable them to carry out varied functions. They also provide sufficient flexibility to facilitate domain motions and, in conjunction with the interacting interfaces, they also regulate the inter-domain geometry (IDG). In spite of the basic intuitive understanding of the inter-domain orientations with respect to linker conformations and interfaces, we still do not entirely understand the precise relationship among the three. We show that IDG is evolutionarily well conserved and is constrained by the domain-domain interface interactions. The IDLs modulate the interactions by varying their lengths, conformations and local structure, thereby affecting the overall IDG. Results of our analysis provide guidelines in modelling of multi-domain proteins from the tertiary structures of constituent domain components.
Resumo:
Ti0.97Pt0.032+O1.97 and Ti0.97Pt0.034+O2 have been synthesized by a solution combustion method using alanine and glycine as the fuels, respectively. Both crystallize in anatase TiO2 structure with 15 nm average crystallite size. X-ray photoelectron spectroscopy (XPS) confirmed Pt ions are in the 2+ state in Ti0.97Pt0.03O1.97 (alanine) and 4+ state in Ti0.97Pt0.03O2 (glycine). The rate of CO oxidation occurring over Ti0.97Pt0.032+O1.97 (0.76 mu mol.g(-1).s(-1)) is similar to 10, times more than that over Ti0.97Pt0.034+O2 at 60 degrees C (0.08 mu mol.g(-1).s(-1)). A large shift in 100% hydrocarbons conversion to lower temperature was observed for Pt2+ ion-substituted TiO2 relative 10 that for Pt4+ ion-substituted TiO2. After reoxidation of the reduced compound by H-2 as well as CO, Pt ions are stabilized in mixed valences, 2+ and 4+ states. The role of oxide ion vacancy has been demonstrated by CO oxidation and H-2 + O-2 recombination reactions in the presence and absence of O-2. We analyze the activated lattice oxygens upon substitution of Pt2+ and Pt4+ ions in TiO2, using first-principles density functional theory (DFT) calculations with supercells of Ti31Pt1O63, Ti30Pt2O62, and Ti29Pt3O61 for Pt2+ ion substitution and Ti31Pt1O64, Ti30Pt2O62, and Ti29Pt3O61 for Pt4+ ion substitution in TiO2. We find that the local structure of Pt2+ ion has a distorted square planar geometry and that of Pt4+ ion has an octahedral geometry similar to that of Ti4+ ion in pure TiO2. The change in coordination of Pt2+ ion gives rise to weakly bonded oxygens, and these oxygens are involved in high rates of catalytic reaction. Thus, the high catalytic activity results from synergistic roles of Pt2+ ion and oxide ion vacancy and weakly bonded lattice oxygen.
Resumo:
Micro-Raman studies are conducted on as-quenched and annealed Ge15Te80 -_xIn5Agx glasses to probe the structural network and its evolution with composition. These studies reveal the presence of tetrahedral GeTe4 structural units in as-quenched samples. Specific signatures of the intermediate phase (IP) are observed in the composition dependence of Raman frequencies and corresponding intensities of different modes in the composition range, 8 <= x <= 16. In addition, the Raman peak positions are found to shift with silver doping. Apart from the Raman results, the compositional dependence of density, molar volume and thermal diffusivity, observed in the present study, confirms the presence of the intermediate phase. In thermally annealed samples, a unique variation of Raman wave-numbers in the intermediate region is observed due to the retention of some of the local structure even after the sample is crystallized. The observed Raman peaks are attributed to crystalline tellurium and silver lattice vibrational modes. Based on our present and earlier studies, we propose the occurrence of three thresholds in Ge15Te80 - xIn5Agx glasses, namely percolation of rigidity, percolation of stress and the onset of chemical phase separation on a nanoscale at 8%, 16% and 20% of silver concentration respectively. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Vanadium Oxide has been a frontrunner in the field of oxide electronics because of its metal-insulator transition (MIT). The interplay of different structures of VO2 has played a crucial role in deciding the magnitude of the first order MIT. Substitution doping has been found to introduce different polymorphs of VO2. Hence the role of substitution doping in stabilizing the competing phases of VO2 in the thin film form remains underexplored. Consequently there have been reports both discounting and approving such a stabilization of competing phases in VO2. It is reported in the literature that the bandwidth of the hysteresis and transition temperature of VO2 can be tuned by substitutional doping of VO2 with W. In this work, we have adopted a novel technique called, Ultrasonic Nebulized Spray Pyrolysis of Aqueous Combustion Mixture (UNSPACM) to deposit VO2 and W- doped VO2 as thin films. XRD and Raman spectroscopy were used to investigate the role of tungsten on the structure of VO2 thin films. Morphology of the thin films was found to be consisting of globular and porous nanoparticles of size similar to 20nm. Transition temperature decreased with the addition of W. We found that for 2.0 at % W doping in VO2, the transition temperature has reduced from 68 degrees C to 25 degrees C. It is noted that W-doping in the process of reducing the transition temperature, alters the local structure and also increases room temperature carrier concentration. (c) 2016 Author(s).
Resumo:
I. Existence and Structure of Bifurcation Branches
The problem of bifurcation is formulated as an operator equation in a Banach space, depending on relevant control parameters, say of the form G(u,λ) = 0. If dimN(G_u(u_O,λ_O)) = m the method of Lyapunov-Schmidt reduces the problem to the solution of m algebraic equations. The possible structure of these equations and the various types of solution behaviour are discussed. The equations are normally derived under the assumption that G^O_λεR(G^O_u). It is shown, however, that if G^O_λεR(G^O_u) then bifurcation still may occur and the local structure of such branches is determined. A new and compact proof of the existence of multiple bifurcation is derived. The linearized stability near simple bifurcation and "normal" limit points is then indicated.
II. Constructive Techniques for the Generation of Solution Branches
A method is described in which the dependence of the solution arc on a naturally occurring parameter is replaced by the dependence on a form of pseudo-arclength. This results in continuation procedures through regular and "normal" limit points. In the neighborhood of bifurcation points, however, the associated linear operator is nearly singular causing difficulty in the convergence of continuation methods. A study of the approach to singularity of this operator yields convergence proofs for an iterative method for determining the solution arc in the neighborhood of a simple bifurcation point. As a result of these considerations, a new constructive proof of bifurcation is determined.
Resumo:
This thesis presents a study of the dynamical, nonlinear interaction of colliding gravitational waves, as described by classical general relativity. It is focused mainly on two fundamental questions: First, what is the general structure of the singularities and Killing-Cauchy horizons produced in the collisions of exactly plane-symmetric gravitational waves? Second, under what conditions will the collisions of almost-plane gravitational waves (waves with large but finite transverse sizes) produce singularities?
In the work on the collisions of exactly-plane waves, it is shown that Killing horizons in any plane-symmetric spacetime are unstable against small plane-symmetric perturbations. It is thus concluded that the Killing-Cauchy horizons produced by the collisions of some exactly plane gravitational waves are nongeneric, and that generic initial data for the colliding plane waves always produce "pure" spacetime singularities without such horizons. This conclusion is later proved rigorously (using the full nonlinear theory rather than perturbation theory), in connection with an analysis of the asymptotic singularity structure of a general colliding plane-wave spacetime. This analysis also proves that asymptotically the singularities created by colliding plane waves are of inhomogeneous-Kasner type; the asymptotic Kasner axes and exponents of these singularities in general depend on the spatial coordinate that runs tangentially to the singularity in the non-plane-symmetric direction.
In the work on collisions of almost-plane gravitational waves, first some general properties of single almost-plane gravitational-wave spacetimes are explored. It is shown that, by contrast with an exact plane wave, an almost-plane gravitational wave cannot have a propagation direction that is Killing; i.e., it must diffract and disperse as it propagates. It is also shown that an almost-plane wave cannot be precisely sandwiched between two null wavefronts; i.e., it must leave behind tails in the spacetime region through which it passes. Next, the occurrence of spacetime singularities in the collisions of almost-plane waves is investigated. It is proved that if two colliding, almost-plane gravitational waves are initially exactly plane-symmetric across a central region of sufficiently large but finite transverse dimensions, then their collision produces a spacetime singularity with the same local structure as in the exact-plane-wave collision. Finally, it is shown that a singularity still forms when the central regions are only approximately plane-symmetric initially. Stated more precisely, it is proved that if the colliding almost-plane waves are initially sufficiently close to being exactly plane-symmetric across a bounded central region of sufficiently large transverse dimensions, then their collision necessarily produces spacetime singularities. In this case, nothing is now known about the local and global structures of the singularities.
Resumo:
应用Judd-Oflet理论计算了新型掺铒高硅氧玻璃中铒离子的强度参量Ωt(t=2,4,6),Ω2=8.15×10^-20,Ω4=1.43×10^-20,Ω6=1.22×10^-20,相比于其他氧化物玻璃,表现出较大的Ω2,6值,反映了铒离子周围的近邻结构不对称性和Er-O键的离子键成分较高.利用McCumber理论计算得到了能级4I13/2→4I15/2跃迁的受激发射截面为σc=O.51pm^2.这种高硅氧玻璃掺铒离子浓度尽管高于石英光纤的掺杂浓度10倍左右,其荧光寿命和量子效率仍达到6.0ms和66.
Resumo:
The local structure of Na-Al-P-O-F glasses, prepared by a novel sol-gel route, was extensively investigated by advanced solid-state NMR techniques. Al-21{F-19} rotational echo double resonance (REDOR) results indicate that the F incorporated into aluminophosphate glass is preferentially bonded to octahedral Al units and results in a significant increase in the concentration of six-coordinated aluminum. The extent of Al-F and Al-O-P connectivities are quantified consistently by analyzing Al-27{P-31} and Al-21{F-19} REDOR NMR data. Two distinct types of fluorine species were identified and characterized by various F-19{Al-27}, F-19{Na-23}, and F-19{P-31} double resonance experiments, which were able to support peak assignments to bridging (Al-F-Al, -140 ppm) and terminal (Al-F, -170 ppm) units. On the basis of the detailed quantitative dipole-dipole coupling information obtained, a comprehensive structural model for these glasses is presented, detailing the structural speciation as a function of composition.
Resumo:
Erbium-doped silica glasses were made by sol-gel process. Intensive photoluminescence (PL) spectra from the Er-doped silica glasses at room temperature were measured. A broadband peak at 1535 ma, corresponding to the I-4(13/2)-I-4(15/2) transition, its full width at half-maximum (FWHM) of 10 nm, and a shoulder at 1546 nm in the PL spectra were observed. At lower temperatures, main line of 1535 nm and another line of 1552 Mn instead of 1546 nm appear. So two types of luminescence centers must exist in the samples at different temperature. The intensity of main line does not decrease obviously with increasing temperature. By varying the Er ion concentration in the range of 0.2 wt% - 5wt%, the highest photoluminescence intensity was obtained at 0.2wt% erbium doped concentration. Luminescence intensity decreases with increasing erbium concentration. Cooperative upconversion was used to explain the concentration quenching of luminescence from silica glass with high erbium concentration. Extended X-ray absorption fine structure measurements were carried out. It was found that the majority of the erbium impurities in the glasses have a local structure of eight first neighbor oxygen atoms at a mean distance of 0.255 nm, which is consistent with the typical coordination structure of rare earth ion.
Resumo:
The local structure and the valences of europium in SrBPO5:Eu prepared in air were checked by means of XAFS at Eu-L-3 edge. From the EXAFS results, it was discovered that the doped europium atoms were nine-coordinated by oxygen atoms and the distances of bond Eu-O were 2.42 Angstrom in the host. From the XANES data, it was found that the divalent and trivalent europium coexisted in the matrix. The emission spectra excited by VUV or UV exhibited a prominent broad band due to the 4f(6)5d-4f(7) transition of Eu2+ ions, which indicated that the trivalent europium ions were reduced in air in the matrix at high temperature by the defects [V-Sr]" formed by aliovalent substitution between Sr2+ and Eu3+ ions. The VUV excitation spectra in 100-200 nm range showed that the matrix had absorption bands with the maxima at about 130 and 150 nm, respectively.
Resumo:
XAFS (EXAFS and XANES) at Eu-L-3 edge were used to determine the local structure and the valences of europium in CaBPO5:Eu prepared in air. The results of EXAFS showed that the doped europium atoms were nine-coordinated by oxygen atoms and the distances of bond Eu-O were 2.39 Angstrom in the host lattice. XANES at Eu-L-3 edge exhibited that Eu2+ and Eu3+ coexisted in the matrix. The luminescent spectrum of the material excited by VUV at 147 nm presented a similar spectrum with that excited by f-f transition of Eu2+ at 396 nm and f-d transition of Eu2+ at 312 nm. The broad emission band due to both 4f(6)5d - 4f(7) transition of EU2+ and f - f transition of Eu3+ could be observed in emission spectra, which indicated that the trivalent europium ions were reduced in air in the matrix at high temperature by the defects [V-Cn]" formed by aliovalent substitution between Ca2+ and Eu3+ ions. The UV excitation spectrum showed the typical f-f transition of Eu3+ and f-d transition of Eu2+. The bands with the maxima at about 113 and 158 nm in VUV excitation spectrum were assigned to originate from the absorption of the host lattice.
Resumo:
The steady state voltammogram at a microdisk electrode is used to measure the diffusion coefficient and standard heterogeneous rate constant (k(s)) of ferrocene in polyelectrolyte PEG + LiClO4. The k(s) obtained is smaller in polyelectrolyte than in liquid medium. It is proposed that the polymer solvent electron transfer dynamics are affected by the relaxation rates of the ether dipole sites on the polymer chains, which are in turn constrained by the rates of polymer chain segment, or local structure, relaxations. The dependence of k(s) on temperature is observed. The k(s) increases with increasing temperature.
Resumo:
Ferric uptake regulator (Fur) is a global regulator involved in multiple aspects of bacterial life. The gene encoding the Vibrio harveyi Fur (Fur(vh)) was cloned from a pathogenic V. harveyi strain isolated from diseased fish. Furvh shares 77% overall sequence identity with the Escherichia coli Fur (Fur(Ec)) and could complement a mutant of Fur(Ec). Like Fur(Ec), Fur(Vh), possesses two cysteine residues at positions 92 and 95, yet unlike Fur(Ec), in which these cysteine residues constitute part of the metal ion coordination site and hence are vital to the repressor activity, C92 and C95 of Fur(Vh) proved to be functionally inessential. Further study identified a Vibrio Fur signature sequence, which is preserved in all the ten Vibrio Fur proteins that have been discovered to date but in none of the non-vibrio Fur proteins. Site-directed and random mutation analyses of the signature residues, the cysteine residues, and seven highly charged amino acid residues indicated that D9, H32, C137, and K138 of Fur(vh) are functionally important but D9, C137, and K138 can be replaced by more than one functional substitutes. Systematic deletion analysis demonstrated that the C-terminal 12 residues of Fur(Vh) are functionally inessential. These results (i) indicated that the activation mechanism, or certain aspects of which, of Fur(Vh) is possibly different from that of Fur(Ec); and (ii) suggested that it is not very likely that the C-terminal 12 residues play any significant role in the activation or stability of Fur(Vh); and (iii) provided insights into the potential function of the local structure involving C137 and K138.
Resumo:
In order to carry out high-precision three-dimensional "integration" for the characteristics of the secondary seismic exploration for Biyang Depression, in the implementation process, through a combination of scientific research and production, summed up high-precision seismic acquisition, processing and interpretation technologies suitable for the eastern part of the old liberated areas, achieved the following results: 1. high-precision complex three-dimensional seismic exploration technology series suitable for shallow depression Biyang block group. To highlight the shallow seismic signal, apply goal-based observing system design, trail from the small panel to receive and protect the shallow treatment of a range of technologies; to explain the use of three-dimensional visualization and coherent combination of full-body three-dimensional fine interpretation identification of the 50-100 m below the unconformity surface and its formation of about 10 meters of the distribution of small faults and improve the small block and stratigraphic unconformity traps recognition. 2. high-precision series of three-dimensional seismic exploration technology suitable for deep depression Biyang low signal to noise ratio of information. Binding model using forward and lighting technology, wide-angle observation system covering the design, multiple suppression and raise the energy of deep seismic reflection processing and interpretation of detailed, comprehensive reservoir description, such as research and technology, identified a number of different types of traps. 3. high-precision seismic exploration technology series for the southern Biyang Depression high steep three-dimensional structure. The use of new technology of seismic wave scattering theory and high-precision velocity model based on pre-stack time migration and depth migration imaging of seismic data and other high-precision processing technology, in order to identify the southern steep slope of the local structure prediction and analysis of sandstone bedrock surface patterns provide a wealth of information.
Resumo:
This thesis explores how to represent image texture in order to obtain information about the geometry and structure of surfaces, with particular emphasis on locating surface discontinuities. Theoretical and psychophysical results lead to the following conclusions for the representation of image texture: (1) A texture edge primitive is needed to identify texture change contours, which are formed by an abrupt change in the 2-D organization of similar items in an image. The texture edge can be used for locating discontinuities in surface structure and surface geometry and for establishing motion correspondence. (2) Abrupt changes in attributes that vary with changing surface geometry ??ientation, density, length, and width ??ould be used to identify discontinuities in surface geometry and surface structure. (3) Texture tokens are needed to separate the effects of different physical processes operating on a surface. They represent the local structure of the image texture. Their spatial variation can be used in the detection of texture discontinuities and texture gradients, and their temporal variation may be used for establishing motion correspondence. What precisely constitutes the texture tokens is unknown; it appears, however, that the intensity changes alone will not suffice, but local groupings of them may. (4) The above primitives need to be assigned rapidly over a large range in an image.