11 resultados para LOCAL-STRUCTURE

em CaltechTHESIS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

I. Existence and Structure of Bifurcation Branches

The problem of bifurcation is formulated as an operator equation in a Banach space, depending on relevant control parameters, say of the form G(u,λ) = 0. If dimN(G_u(u_O,λ_O)) = m the method of Lyapunov-Schmidt reduces the problem to the solution of m algebraic equations. The possible structure of these equations and the various types of solution behaviour are discussed. The equations are normally derived under the assumption that G^O_λεR(G^O_u). It is shown, however, that if G^O_λεR(G^O_u) then bifurcation still may occur and the local structure of such branches is determined. A new and compact proof of the existence of multiple bifurcation is derived. The linearized stability near simple bifurcation and "normal" limit points is then indicated.

II. Constructive Techniques for the Generation of Solution Branches

A method is described in which the dependence of the solution arc on a naturally occurring parameter is replaced by the dependence on a form of pseudo-arclength. This results in continuation procedures through regular and "normal" limit points. In the neighborhood of bifurcation points, however, the associated linear operator is nearly singular causing difficulty in the convergence of continuation methods. A study of the approach to singularity of this operator yields convergence proofs for an iterative method for determining the solution arc in the neighborhood of a simple bifurcation point. As a result of these considerations, a new constructive proof of bifurcation is determined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis presents a study of the dynamical, nonlinear interaction of colliding gravitational waves, as described by classical general relativity. It is focused mainly on two fundamental questions: First, what is the general structure of the singularities and Killing-Cauchy horizons produced in the collisions of exactly plane-symmetric gravitational waves? Second, under what conditions will the collisions of almost-plane gravitational waves (waves with large but finite transverse sizes) produce singularities?

In the work on the collisions of exactly-plane waves, it is shown that Killing horizons in any plane-symmetric spacetime are unstable against small plane-symmetric perturbations. It is thus concluded that the Killing-Cauchy horizons produced by the collisions of some exactly plane gravitational waves are nongeneric, and that generic initial data for the colliding plane waves always produce "pure" spacetime singularities without such horizons. This conclusion is later proved rigorously (using the full nonlinear theory rather than perturbation theory), in connection with an analysis of the asymptotic singularity structure of a general colliding plane-wave spacetime. This analysis also proves that asymptotically the singularities created by colliding plane waves are of inhomogeneous-Kasner type; the asymptotic Kasner axes and exponents of these singularities in general depend on the spatial coordinate that runs tangentially to the singularity in the non-plane-symmetric direction.

In the work on collisions of almost-plane gravitational waves, first some general properties of single almost-plane gravitational-wave spacetimes are explored. It is shown that, by contrast with an exact plane wave, an almost-plane gravitational wave cannot have a propagation direction that is Killing; i.e., it must diffract and disperse as it propagates. It is also shown that an almost-plane wave cannot be precisely sandwiched between two null wavefronts; i.e., it must leave behind tails in the spacetime region through which it passes. Next, the occurrence of spacetime singularities in the collisions of almost-plane waves is investigated. It is proved that if two colliding, almost-plane gravitational waves are initially exactly plane-symmetric across a central region of sufficiently large but finite transverse dimensions, then their collision produces a spacetime singularity with the same local structure as in the exact-plane-wave collision. Finally, it is shown that a singularity still forms when the central regions are only approximately plane-symmetric initially. Stated more precisely, it is proved that if the colliding almost-plane waves are initially sufficiently close to being exactly plane-symmetric across a bounded central region of sufficiently large transverse dimensions, then their collision necessarily produces spacetime singularities. In this case, nothing is now known about the local and global structures of the singularities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

If R is a ring with identity, let N(R) denote the Jacobson radical of R. R is local if R/N(R) is an artinian simple ring and ∩N(R)i = 0. It is known that if R is complete in the N(R)-adic topology then R is equal to (B)n, the full n by n matrix ring over B where E/N(E) is a division ring. The main results of the thesis deal with the structure of such rings B. In fact we have the following.

If B is a complete local algebra over F where B/N(B) is a finite dimensional normal extension of F and N(B) is finitely generated as a left ideal by k elements, then there exist automorphisms gi,...,gk of B/N(B) over F such that B is a homomorphic image of B/N[[x1,…,xk;g1,…,gk]] the power series ring over B/N(B) in noncommuting indeterminates xi, where xib = gi(b)xi for all b ϵ B/N.

Another theorem generalizes this result to complete local rings which have suitable commutative subrings. As a corollary of this we have the following. Let B be a complete local ring with B/N(B) a finite field. If N(B) is finitely generated as a left ideal by k elements then there exist automorphisms g1,…,gk of a v-ring V such that B is a homomorphic image of V [[x1,…,xk;g1,…,gk]].

In both these results it is essential to know the structure of N(B) as a two sided module over a suitable subring of B.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neurons in the songbird forebrain nucleus HVc are highly sensitive to auditory temporal context and have some of the most complex auditory tuning properties yet discovered. HVc is crucial for learning, perceiving, and producing song, thus it is important to understand the neural circuitry and mechanisms that give rise to these remarkable auditory response properties. This thesis investigates these issues experimentally and computationally.

Extracellular studies reported here compare the auditory context sensitivity of neurons in HV c with neurons in the afferent areas of field L. These demonstrate that there is a substantial increase in the auditory temporal context sensitivity from the areas of field L to HVc. Whole-cell recordings of HVc neurons from acute brain slices are described which show that excitatory synaptic transmission between HVc neurons involve the release of glutamate and the activation of both AMPA/kainate and NMDA-type glutamate receptors. Additionally, widespread inhibitory interactions exist between HVc neurons that are mediated by postsynaptic GABA_A receptors. Intracellular recordings of HVc auditory neurons in vivo provides evidence that HV c neurons encode information about temporal structure using a variety of cellular and synaptic mechanisms including syllable-specific inhibition, excitatory post-synaptic potentials with a range of different time courses, and burst-firing, and song-specific hyperpolarization.

The final part of this thesis presents two computational approaches for representing and learning temporal structure. The first method utilizes comput ational elements that are analogous to temporal combination sensitive neurons in HVc. A network of these elements can learn using local information and lateral inhibition. The second method presents a more general framework which allows a network to discover mixtures of temporal features in a continuous stream of input.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The temporal structure of neuronal spike trains in the visual cortex can provide detailed information about the stimulus and about the neuronal implementation of visual processing. Spike trains recorded from the macaque motion area MT in previous studies (Newsome et al., 1989a; Britten et al., 1992; Zohary et al., 1994) are analyzed here in the context of the dynamic random dot stimulus which was used to evoke them. If the stimulus is incoherent, the spike trains can be highly modulated and precisely locked in time to the stimulus. In contrast, the coherent motion stimulus creates little or no temporal modulation and allows us to study patterns in the spike train that may be intrinsic to the cortical circuitry in area MT. Long gaps in the spike train evoked by the preferred direction motion stimulus are found, and they appear to be symmetrical to bursts in the response to the anti-preferred direction of motion. A novel cross-correlation technique is used to establish that the gaps are correlated between pairs of neurons. Temporal modulation is also found in psychophysical experiments using a modified stimulus. A model is made that can account for the temporal modulation in terms of the computational theory of biological image motion processing. A frequency domain analysis of the stimulus reveals that it contains a repeated power spectrum that may account for psychophysical and electrophysiological observations.

Some neurons tend to fire bursts of action potentials while others avoid burst firing. Using numerical and analytical models of spike trains as Poisson processes with the addition of refractory periods and bursting, we are able to account for peaks in the power spectrum near 40 Hz without assuming the existence of an underlying oscillatory signal. A preliminary examination of the local field potential reveals that stimulus-locked oscillation appears briefly at the beginning of the trial.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inelastic neutron scattering (INS) and nuclear-resonant inelastic x-ray scattering (NRIXS) were used to measure phonon spectra of FeV as a B2- ordered compound and as a bcc solid solution. Contrary to the behavior of ordering alloys studied to date, the phonons in the B2-ordered phase are softer than in the solid solution. Ordering increases the vibrational entropy, which stabilizes the ordered phase to higher temperatures. Ab initio calculations show that the number of electronic states at the Fermi level increases upon ordering, enhancing the screening between ions, and reducing the interatomic force constants. The effect of screening is larger at the V atomic sites than at the Fe atomic sites.

The phonon spectra of Au-rich alloys of fcc Au-Fe were also measured. The main effect on the vibrational entropy of alloying comes from a stiffening of the Au partial phonon density of states (DOS) with Fe concentration that increases the miscibility gap temperature. The magnitude of the effect is non- linear and it is reduced at higher Fe concentrations. Force constants were calculated for several compositions and show a local stiffening of Au–Au bonds close to Fe atoms, but Au–Au bonds that are farther away do not show this effect. Phonon DOS curves calculated from the force constants reproduced the experimental trends. The Au–Fe bond is soft and favors ordering, but a charge transfer from the Fe to the Au atoms stiffens the Au–Au bonds enough to favor unmixing. The stiffening is attributed to two main effects comparable in magnitude: an increase in electron density in the free-electron-like states, and stronger sd-hybridization.

INS and NRIXS measurements were performed at elevated temperatures on B2-ordered FeTi and NRIXS measurements were performed at high pressures. The high-pressure behavior is quasi- harmonic. The softening of the phonon DOS curves with temperature is strongly nonharmonic. Calculations of the force constants and Born-von Karman fits to the experimental data show that the bonds between second nearest neighbors (2nn) are much stiffer than those between 1nn, but fits to the high temperature data show that the former softens at a faster rate with temperature. The Fe–Fe bond softens more than the Ti–Ti bond. The unusual stiffness of the 2nn bond is explained by the calculated charge distribution, which is highly aspherical and localized preferentially in the t2g orbitals. Ab initio molecular dynamics (AIMD) simulations show a charge transfer from the t2g orbitals to the eg orbitals at elevated temperatures. The asphericity decreases linearly with temperature and is more severe at the Fe sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crustal structure in Southern California is investigated using travel times from over 200 stations and thousands of local earthquakes. The data are divided into two sets of first arrivals representing a two-layer crust. The Pg arrivals have paths that refract at depths near 10 km and the Pn arrivals refract along the Moho discontinuity. These data are used to find lateral and azimuthal refractor velocity variations and to determine refractor topography.

In Chapter 2 the Pn raypaths are modeled using linear inverse theory. This enables statistical verification that static delays, lateral slowness variations and anisotropy are all significant parameters. However, because of the inherent size limitations of inverse theory, the full array data set could not be processed and the possible resolution was limited. The tomographic backprojection algorithm developed for Chapters 3 and 4 avoids these size problems. This algorithm allows us to process the data sequentially and to iteratively refine the solution. The variance and resolution for tomography are determined empirically using synthetic structures.

The Pg results spectacularly image the San Andreas Fault, the Garlock Fault and the San Jacinto Fault. The Mojave has slower velocities near 6.0 km/s while the Peninsular Ranges have higher velocities of over 6.5 km/s. The San Jacinto block has velocities only slightly above the Mojave velocities. It may have overthrust Mojave rocks. Surprisingly, the Transverse Ranges are not apparent at Pg depths. The batholiths in these mountains are possibly only surficial.

Pn velocities are fast in the Mojave, slow in Southern California Peninsular Ranges and slow north of the Garlock Fault. Pn anisotropy of 2% with a NWW fast direction exists in Southern California. A region of thin crust (22 km) centers around the Colorado River where the crust bas undergone basin and range type extension. Station delays see the Ventura and Los Angeles Basins but not the Salton Trough, where high velocity rocks underlie the sediments. The Transverse Ranges have a root in their eastern half but not in their western half. The Southern Coast Ranges also have a thickened crust but the Peninsular Ranges have no major root.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Johnny Lyon Hills area is located in Cochise County in southeastern Arizona. The rocks of the area include a central core of Lower pre-Cambrian igneous and metamorphic rocks surrounded by a complexly faulted and tilted section of Upper pre-Cambrian and Paleozoic strata. Limited exposures of Mesozoic and Tertiary sedimentary and volcanic rocks are present at the north end of the map area. Late Tertiary and Quaternary alluvium almost completely surrounds and overlaps upon the older rocks.

The older pre-Cambrian rocks include a section of more than 9000 feet of generally moderately metamorphosed graywackes, slates and conglomerates of the Pinal schist injected in zones by somewhat younger rnyolite sheets. The original sediments were deposited in a geosyncline whose extent probably included large parts of Arizona, New Mexico and west Texas. During the Mazatzal Revolution the Pinal schist was deformed into northeast-trending, steeply dipping and plunging structures and the entire local section was overturned steeply toward the northwest. The pre-Cambrian Johnny Lyon granodiorite was emplaced as a large epi-tectonic pluton which modified the metamorphic character of part of the Pinal schist. Larsen method determinations indicate an age of about 715 million years for this rock, which is about the minimum age compatible with the geologic relations.

The Laramide orogeny produced numerous major thrust faults in the area involving all rocks older than and including the Lower Cretaceous Bisbee group. Major compression from the southwest and subsequent superimposed thrusting from the southeast and east are indicated. Minimum thrust displacements of more than a mile are clear and the probable displacements are of much greater magnitude. The crystalline core behaved as a single structural unit and probably caused important local divergences from the regional pattern of northeast-trending compressive forces. The massif was rotated as a unit 40 degrees or more about a northwest-trending axis overturning the pre-Cambrian fold axes in the Pinal schist.

Swarms of Late Cretaceous(?) or Early Tertiary(?) lamprophyric dikes cross the Laramide structures and are probably related to the large Texas Canyon stock several miles southeast of the map area. Intermittent high angle faulting, both older and younger than the dikes, has continued since the Laramide orogeny and has been superimposed on the older structures. This steep faulting combined with the fundamental northwesterly Laramide structural grain to produce the northwesterly trends characteristic of the mountain ridges and valleys of the area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structure and the electrical and magnetic properties of an amorphous alloy containing approximately 80 at .% iron, 13 at.% phos phorus and 7 at.% carbon (Fe_(80)Fe_(13)C_7) obtained by rapid quenching from the liquid state have been studied. Transmission electron diffraction data confirm the amorphous nature of this alloy. An analysis of the radial distribution function obtained from X-ray diffraction data indicates that the number of nearest neighbors is approximately seven, at a distance of 2.6A. The structure of the alloy can be related to that of silicate glasses and is based on a random arrangement of trigonal prisms of Fe_2P and Fe_3C types in which the iron atoms have an average ligancy of seven. Electrical resistance measurements show that the alloys are metallic. A minimum in the electrical resistivity vs. temperature curve is observed between 10° K to 50° K depending on the specimen, and the temperature at which the minimum occurs is related to the degree of local ordering. The Fe-P-C amorphous alloys are ferromagnetic. The Curie temperature measured by the induction method and by Mossbauer spectroscopy is 315° C. The field dependence of the magneto-resistance at temperatures from liquid helium to room temperature is similar to that found in crystalline iron. The ordinary Hall coefficient is approximately 10^(-11) volt-cm/amp-G. The spontaneous Hall coefficient is about 0.6 x 10^(-9) volt-cm/amp-G and is practically independent of temperature from liquid helium temperature up to 300° c.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although numerous theoretical efforts have been put forth, a systematic, unified and predictive theoretical framework that is able to capture all the essential physics of the interfacial behaviors of ions, such as the Hofmeister series effect, Jones-Ray effect and the salt effect on the bubble coalescence remain an outstanding challenge. The most common approach to treating electrostatic interactions in the presence of salt ions is the Poisson-Boltzmann (PB) theory. However, there are many systems for which the PB theory fails to offer even a qualitative explanation of the behavior, especially for ions distributed in the vicinity of an interface with dielectric contrast between the two media (like the water-vapor/oil interface). A key factor missing in the PB theory is the self energy of the ion.

In this thesis, we develop a self-consistent theory that treats the electrostatic self energy (including both the short-range Born solvation energy and the long-range image charge interactions), the nonelectrostatic contribution of the self energy, the ion-ion correlation and the screening effect systematically in a single framework. By assuming a finite charge spread of the ion instead of using the point-charge model, the self energy obtained by our theory is free of the divergence problems and gives a continuous self energy across the interface. This continuous feature allows ions on the water side and the vapor/oil side of the interface to be treated in a unified framework. The theory involves a minimum set of parameters of the ion, such as the valency, radius, polarizability of the ions, and the dielectric constants of the medium, that are both intrinsic and readily available. The general theory is first applied to study the thermodynamic property of the bulk electrolyte solution, which shows good agreement with the experiment result for predicting the activity coefficient and osmotic coefficient.

Next, we address the effect of local Born solvation energy on the bulk thermodynamics and interfacial properties of electrolyte solution mixtures. We show that difference in the solvation energy between the cations and anions naturally gives rise to local charge separation near the interface, and a finite Galvani potential between two coexisting solutions. The miscibility of the mixture can either increases or decreases depending on the competition between the solvation energy and translation entropy of the ions. The interfacial tension shows a non-monotonic dependence on the salt concentration: it increases linearly with the salt concentration at higher concentrations, and decreases approximately as the square root of the salt concentration for dilute solutions, which is in agreement with the Jones-Ray effect observed in experiment.

Next, we investigate the image effects on the double layer structure and interfacial properties near a single charged plate. We show that the image charge repulsion creates a depletion boundary layer that cannot be captured by a regular perturbation approach. The correct weak-coupling theory must include the self-energy of the ion due to the image charge interaction. The image force qualitatively alters the double layer structure and properties, and gives rise to many non-PB effects, such as nonmonotonic dependence of the surface energy on concentration and charge inversion. The image charge effect is then studied for electrolyte solutions between two plates. For two neutral plates, we show that depletion of the salt ions by the image charge repulsion results in short-range attractive and long-range repulsive forces. If cations and anions are of different valency, the asymmetric depletion leads to the formation of an induced electrical double layer. For two charged plates, the competition between the surface charge and the image charge effect can give rise to like- charge attraction.

Then, we study the inhomogeneous screening effect near the dielectric interface due to the anisotropic and nonuniform ion distribution. We show that the double layer structure and interfacial properties is drastically affected by the inhomogeneous screening if the bulk Debye screening length is comparable or smaller than the Bjerrum length. The width of the depletion layer is characterized by the Bjerrum length, independent of the salt concentration. We predict that the negative adsorption of ions at the interface increases linearly with the salt concentration, which cannot be captured by either the bulk screening approximation or the WKB approximation. For asymmetric salt, the inhomogeneous screening enhances the charge separation in the induced double layer and significantly increases the value of the surface potential.

Finally, to account for the ion specificity, we study the self energy of a single ion across the dielectric interface. The ion is considered to be polarizable: its charge distribution can be self-adjusted to the local dielectric environment to minimize the self energy. Using intrinsic parameters of the ions, such as the valency, radius, and polarizability, we predict the specific ion effect on the interfacial affinity of halogen anions at the water/air interface, and the strong adsorption of hydrophobic ions at the water/oil interface, in agreement with experiments and atomistic simulations.

The theory developed in this work represents the most systematic theoretical technique for weak-coupling electrolytes. We expect the theory to be more useful for studying a wide range of structural and dynamic properties in physicochemical, colloidal, soft-matter and biophysical systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

G-protein coupled receptors (GPCRs) form a large family of proteins and are very important drug targets. They are membrane proteins, which makes computational prediction of their structure challenging. Homology modeling is further complicated by low sequence similarly of the GPCR superfamily.

In this dissertation, we analyze the conserved inter-helical contacts of recently solved crystal structures, and we develop a unified sequence-structural alignment of the GPCR superfamily. We use this method to align 817 human GPCRs, 399 of which are nonolfactory. This alignment can be used to generate high quality homology models for the 817 GPCRs.

To refine the provided GPCR homology models we developed the Trihelix sampling method. We use a multi-scale approach to simplify the problem by treating the transmembrane helices as rigid bodies. In contrast to Monte Carlo structure prediction methods, the Trihelix method does a complete local sampling using discretized coordinates for the transmembrane helices. We validate the method on existing structures and apply it to predict the structure of the lactate receptor, HCAR1. For this receptor, we also build extracellular loops by taking into account constraints from three disulfide bonds. Docking of lactate and 3,5-dihydroxybenzoic acid shows likely involvement of three Arg residues on different transmembrane helices in binding a single ligand molecule.

Protein structure prediction relies on accurate force fields. We next present an effort to improve the quality of charge assignment for large atomic models. In particular, we introduce the formalism of the polarizable charge equilibration scheme (PQEQ) and we describe its implementation in the molecular simulation package Lammps. PQEQ allows fast on the fly charge assignment even for reactive force fields.