952 resultados para Integrin Alpha-3-beta-1
Resumo:
Synthesis of prebiotic alpha- and beta-galactooligosaccharides (GOS) using the whole cells of Bifidobacterium bifidum NCIMB 41171 was investigated. Determination of alpha- and beta-galactosidase activities showed them to be at 3 and 205 g(-1) of freeze dried biomass, respectively, and they increased to 5 and 344 U g(-1), respectively, when cells were treated with toluene. Starting with 450-500 mg mL(-1) lactose, maximum GOS concentrations were observed at 80-85% lactose conversions and the mixtures contained oligosaccharides (with a degree of polymerisation >= 3) at 77-109 mg mL(-1) and trans-galactosylated disaccharides between 85-115 mg mL(-1). The GOS yield values varied between 36% and 43%. An alpha-linked disaccharide was detected and its presence was confirmed by gas chromatography mass spectroscopy. Cells were re-used up to 8 times without changes in reaction times or the substrate conversions to GOS. Oligosaccharide synthesis was not inhibited by the presence of glucose or galactose. The mixtures were successfully purified from glucose (92% of glucose removed) by fermentation with Saccharomyces cerevisiae with no losses in the oligosaccharide content and only a small decrease on the galactose. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
OBJECTIVE: Platelet endothelial cell adhesion molecule-1 (PECAM-1) regulates platelet response to multiple agonists. How this immunoreceptor tyrosine-based inhibitory motif-containing receptor inhibits G protein-coupled receptor-mediated thrombin-induced activation of platelets is unknown. APPROACH AND RESULTS: Here, we show that the activation of PECAM-1 inhibits fibrinogen binding to integrin αIIbβ3 and P-selectin surface expression in response to thrombin (0.1-3 U/mL) but not thrombin receptor-activating peptides SFLLRN (3×10(-7)-1×10(-5) mol/L) and GYPGQV (3×10(-6)-1×10(-4) mol/L). We hypothesized a role for PECAM-1 in reducing the tethering of thrombin to glycoprotein Ibα (GPIbα) on the platelet surface. We show that PECAM-1 signaling regulates the binding of fluorescein isothiocyanate-labeled thrombin to the platelet surface and reduces the levels of cell surface GPIbα by promoting its internalization, while concomitantly reducing the binding of platelets to von Willebrand factor under flow in vitro. PECAM-1-mediated internalization of GPIbα was reduced in the presence of both EGTA and cytochalasin D or latrunculin, but not either individually, and was reduced in mice in which tyrosines 747 and 759 of the cytoplasmic tail of β3 integrin were mutated to phenylalanine. Furthermore, PECAM-1 cross-linking led to a significant reduction in the phosphorylation of glycogen synthase kinase-3β Ser(9), but interestingly an increase in glycogen synthase kinase-3α pSer(21). PECAM-1-mediated internalization of GPIbα was reduced by inhibitors of dynamin (Dynasore) and glycogen synthase kinase-3 (CHIR99021), an effect that was enhanced in the presence of EGTA. CONCLUSIONS: PECAM-1 mediates internalization of GPIbα in platelets through dual AKT/protein kinase B/glycogen synthase kinase-3/dynamin-dependent and αIIbβ3-dependent mechanisms. These findings expand our understanding of how PECAM-1 regulates nonimmunoreceptor signaling pathways and helps to explains how PECAM-1 regulates thrombosis.
Resumo:
Long-term adaptation to resistance training is probably due to the cumulative molecular effects of each exercise session. Therefore, we studied in female Wistar rats the molecular effects of a chronic resistance training regimen (3 months) leading to skeletal muscle hypertrophy in the plantaris muscle. Our results demonstrated that muscle proteolytic genes MuRF-1 and Atrogin-1 were significantly decreased in the exercised group measured 24 h after the last resistance exercise session (41.64 and 61.19%, respectively; P < 0.05). Nonetheless, when measured at the same time point, 4EBP-1, GSK-3 beta and eIF2B epsilon mRNA levels and Akt, GSK-3 beta and p70S6K protein levels (regulators of translation initiation) were not modified. Such data suggests that if gene transcription constitutes a control point in the protein synthesis pathway this regulation probably occurs in early adaptation periods or during extreme situations leading to skeletal muscle remodeling. However, proteolytic gene expression is modified even after a prolonged resistance training regimen leading to moderate skeletal muscle hypertrophy.
Resumo:
1,3-beta-Glucan depolymerizing enzymes have considerable biotechnological applications including biofuel production, feedstock-chemicals and pharmaceuticals. Here we describe a comprehensive functional characterization and low-resolution structure of a hyperthermophilic laminarinase from Thermotoga petrophila (TpLam). We determine TpLam enzymatic mode of operation, which specifically cleaves internal beta-1,3-glucosidic bonds. The enzyme most frequently attacks the bond between the 3rd and 4th residue from the non-reducing end, producing glucose, laminaribiose and laminaritriose as major products. Far-UV circular dichroism demonstrates that TpLam is formed mainly by beta structural elements, and the secondary structure is maintained after incubation at 90 degrees C. The structure resolved by small angle X-ray scattering, reveals a multi-domain structural architecture of a V-shape envelope with a catalytic domain flanked by two carbohydrate-binding modules. Crown Copyright (C) 2011 Published by Elsevier Inc. All rights reserved.
Resumo:
Spodoptera frugiperda beta-1,3-glucanase (SLam) was purified from larval midgut. It has a molecular mass of 37.5 kDa, an alkaline optimum pH of 9.0, is active against beta-1,3-glucan (laminarin), but cannot hydrolyze yeast beta-1,3-1,6-glucan or other polysaccharides. The enzyme is an endoglucanase with low processivity (0.4), and is not inhibited by high concentrations of substrate. In contrast to other digestive beta-1,3-glucanases from insects, SLam is unable to lyse Saccharomyces cerevisae cells. The cDNA encoding SLam was cloned and sequenced, showing that the protein belongs to glycosyl hydrolase family 16 as other insect glucanases and glucan-binding proteins. Multiple sequence alignment of beta-1,3-glucanases and beta-glucan-binding protein supports the assumption that the beta-1,3-glucanase gene duplicated in the ancestor of mollusks and arthropods. One copy originated the derived beta-1,3-glucanases by the loss of an extended N-terminal region and the beta-glucan-binding proteins by the loss of the catalytic residues. SLam homology modeling suggests that E228 may affect the ionization of the catalytic residues, thus displacing the enzyme pH optimum. SLam antiserum reacts with a single protein in the insect midgut. Immunocytolocalization shows that the enzyme is present in secretory vesicles and glycocalyx from columnar cells. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The major beta-1,3-glucanase from Tenebrio molitor (TLam) was purified to homogeneity (yield, 6%; enrichment, 113 fold; specific activity, 4.4 U/mg). TLam has a molecular weight of 50 kDa and a pH optimum of 6. It is an encloglucanase that hydrolyzes beta-1,3-glucans as laminarin and yeast beta-1,3-1,6-glucan, but is inactive toward other polysaccharides (as unbranched beta-1,3-glucans or mixed beta-1,3-1,4-glucan from cereals) or disaccharides. The enzyme is not inhibited by high substrate concentrations and has low processivity (0.6). TLam has two ionizable groups involved in catalysis, and His, Tyr and Arg residues plus a divalent ion at the active site. A Cys residue important for TLam activity is exposed after laminarin binding. The cDNA coding for this enzyme was cloned and sequenced. It belongs to glycoside hydrolase family 16, and is related to other insect glucanases and glucan-binding proteins. Sequence analysis and homology modeling allowed the identification of some residues (E174, E179, H204, Y304, R127 and R181) at the active site of the enzyme, which may be important for TLam activity. TLam efficiently lyses fungal cells, suggesting a role in making available walls and cell contents to digestion and in protecting the midgut from pathogen infections. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Botryosphaeran, a (1 -> 3; 1 -> 6)-beta-D-glucan produced by Botryosphaeria rhodina, and laminarin were hydrolysed by two fungal beta-glucanases predominantly of the 1,3-type produced by B. rhodina and Trichoderma harzianum Rifai grown on botryosphaeran as sole carbon source. Both beta-glucanase preparations presented different modes of attack on botryosphaeran and laminarin. Laminarin was hydrolysed to the extent of similar to 50% in 1 hand 100% within 24 h, and its hydrolysis products were mainly glucose and gentiobiose, and lesser amounts of laminaribiose and oligosaccharides of DP 3-4 during the early stages of hydrolysis, while botryosphaeran 'yielded mainly glucose and gentiobiose with some trisaccharide, but no laminaribiose or tetrasaccharide when hydrolysed by the T. harzianum enzyme. By contrast, B. rhodina beta-1,3-glucanases produced predominantly glucose during all stages of botryosphaeran hydrolysis. Some physicochemical properties of the 1,3- and 1,6-beta-glucanases, and beta-glucosidases contained in the two fungal P-glucanase preparations are also described for the first time. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Botryosphaeria rhodina and Trichoderma harzianum Rifai were grown on botryosphaeran (an exopolysaccharide (EPS) of the beta-1,3; 1,6-D-Glucan type produced by B. rhodina) as sole carbon source with the objective of producing beta-glucanases of the beta-type. Conditions for beta-1,3-glucanase production by T harzianum were examined by a statistical response surface method, and showed maximal enzyme production at 5 days growth in media containing 1.5 g/1 of EPS. Good agreement was obtained between the experimental values of beta-1, 3-glucanase activity and the corresponding values predicted by the mathernatical model. The crude beta-1,3-glucanase preparations were active towards a number of different beta-1,3-glucans and beta-glucosides. The mycelium of B. rhodina also proved to be a good substrate for beta-1,3-glucanase production by both fungal species. (c) 2005 Published by Elsevier Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Barley plants (cultivars Embrapa 127, 128 and 129) treated with xanthan gum, and with different time intervals between the administration of the inducer and the pathogen, demonstrated induction of resistance against Bipolaris sorokiniana. Induction was shown to have local and systemic action. In order to prove the resistance effect, biochemical analyses were performed to quantify proteins and the enzymatic activity of beta-1,3 glucanase. Results demonstrated that barley plants treated with the inducer, showed an increase in the concentration of proteins, as well as in the activity of the enzyme beta-1,3 glucanase, when compared with the extract from healthy plants. In infected plants, protein concentrations decreased and enzymatic activity was lower than in healthy plants. Results suggest that barley plants treated with xanthan gum developed mechanisms responsible for induced resistance, which are still unknown. The most important macromolecule in the defense mechanism was demonstrated to be PR-protein, due to its accumulation and concentration of proteins. However, it may not be the only macromolecule responsible for the resistance effect. (C) 2004 Elsevier SAS. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Abstract Background The main focus of several studies concerned with cancer progression and metastasis is to analyze the mechanisms that allow cancer cells to interact and quickly adapt with their environment. Integrins, a family of transmembrane glycoproteins, play a major role in invasive and metastatic processes. Integrins are involved in cell adhesion in both cell-extracellular matrix and cell-cell interactions, and particularly, β1 integrin is involved in proliferation and differentiation of cells in the development of epithelial tissues. This work aimed to investigate the putative role of β1 integrin expression on survival and metastasis in patients with breast invasive ductal carcinoma (IDC). In addition, we compared the expression of β1 integrin in patients with ductal carcinoma in situ (DCIS). Methods Through tissue microarray (TMA) slides containing 225 samples of IDC and 67 samples of DCIS, β1 integrin expression was related with several immunohistochemical markers and clinicopathologic features of prognostic significance. Results β1 integrin was overexpressed in 32.8% of IDC. In IDC, β1 integrin was related with HER-2 (p = 0.019) and VEGF (p = 0.011) expression and it had a significant relationship with metastasis and death (p = 0.001 and p = 0.05, respectively). Kaplan-Meier survival analysis showed that the overexpression of this protein is very significant (p = 0.002) in specific survival (number of months between diagnosis and death caused by the disease). There were no correlation between IDC and DCIS (p = 0.559) regarding β1 integrin expression. Conclusions Considering that the expression of β1 integrin in breast cancer remains controversial, specially its relation with survival of patients, our findings provide further evidence that β1 integrin can be a marker of poor prognosis in breast cancer. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/6652215267393871