969 resultados para Image Foresting Transform
Resumo:
The growth kinetics of self-assembled monolayers formed by exposing freshly cleaved mica to octanol solution has been studied by atomic force microscopy (AFM) and Fourier-transform infrared spectroscopy (FTIR). AFM images of samples immersed in octanol for varying exposure times showed that before forming a complete monolayer the octanol molecules aggregated in the form of small islands on the mica surface. With the proceeding of immersion, these islands gradually grew and merged into larger patches. Finally, a close-packed film with uniform appearance and few defects was formed. The thickness of the final film showed 0.8 nm in height, which corresponded to the 40degrees tilt molecular conformation of the octanol monolayer. The growth mechanisms consisted of nucleation, growth, and coalescence of the submonolayer films. The growth process was also confirmed by FTIR. And the surface coverage of the submonolayer islands estimated from AFM images and FTIR spectra as a function of immersion time was quite consistent.
Resumo:
This paper is concerned with the universal (blind) image steganalysis problem and introduces a novel method to detect especially spatial domain steganographic methods. The proposed steganalyzer models linear dependencies of image rows/columns in local neighborhoods using singular value decomposition transform and employs content independency provided by a Wiener filtering process. Experimental results show that the novel method has superior performance when compared with its counterparts in terms of spatial domain steganography. Experiments also demonstrate the reasonable ability of the method to detect discrete cosine transform-based steganography as well as the perturbation quantization method.
Resumo:
This implementation of a two-dimensional discrete cosine transform demonstrates the development of a suitable architectural style for a specific technology-in this case, the Xilinx XC6200 FPGA series. The design exploits distributed arithmetic, parallelism, and pipelining to achieve a high-performance custom-computing implementation.
Resumo:
Latent semantic indexing (LSI) is a technique used for intelligent information retrieval (IR). It can be used as an alternative to traditional keyword matching IR and is attractive in this respect because of its ability to overcome problems with synonymy and polysemy. This study investigates various aspects of LSI: the effect of the Haar wavelet transform (HWT) as a preprocessing step for the singular value decomposition (SVD) in the key stage of the LSI process; and the effect of different threshold types in the HWT on the search results. The developed method allows the visualisation and processing of the term document matrix, generated in the LSI process, using HWT. The results have shown that precision can be increased by applying the HWT as a preprocessing step, with better results for hard thresholding than soft thresholding, whereas standard SVD-based LSI remains the most effective way of searching in terms of recall value.
Resumo:
A number of high-performance VLSI architectures for real-time image coding applications are described. In particular, attention is focused on circuits for computing the 2-D DCT (discrete cosine transform) and for 2-D vector quantization. The former circuits are based on Winograd algorithms and comprise a number of bit-level systolic arrays with a bit-serial, word-parallel input. The latter circuits exhibit a similar data organization and consist of a number of inner product array circuits. Both circuits are highly regular and allow extremely high data rates to be achieved through extensive use of parallelism.
Resumo:
The inclusion of the Discrete Wavelet Transform in the JPEG-2000 standard has added impetus to the research of hardware architectures for the two-dimensional wavelet transform. In this paper, a VLSI architecture for performing the symmetrically extended two-dimensional transform is presented. This architecture conforms to the JPEG-2000 standard and is capable of near-optimal performance when dealing with the image boundaries. The architecture also achieves efficient processor utilization. Implementation results based on a Xilinx Virtex-2 FPGA device are included.
Resumo:
Details are presented of the IRIS synthesis system for high-performance digital signal processing. This tool allows non-specialists to automatically derive VLSI circuit architectures from high-level, algorithmic representations, and provides a quick route to silicon implementation. The applicability of the system is demonstrated using the design example of a one-dimensional Discrete Cosine Transform circuit.
Resumo:
This paper reports image analysis methods that have been developed to study the microstructural changes of non-wovens made by the hydroentanglement process. The validity of the image processing techniques has been ascertained by applying them to test images with known properties. The parameters in preprocessing of the scanning electron microscope (SEM) images used in image processing have been tested and optimized. The fibre orientation distribution is estimated using fast Fourier transform (FFT) and Hough transform (HT) methods. The results obtained using these two methods are in good agreement. The HT method is more demanding in computational time compared with the Fourier transform (FT) method. However, the advantage of the HT method is that the actual orientation of the lines can be concluded directly from the result of the transform without the need for any further computation. The distribution of the length of the straight fibre segments of the fabrics is evaluated by the HT method. The effect of curl of the fibres on the result of this evaluation is shown.
Resumo:
Life science research aims to continuously improve the quality and standard of human life. One of the major challenges in this area is to maintain food safety and security. A number of image processing techniques have been used to investigate the quality of food products. In this paper,we propose a new algorithm to effectively segment connected grains so that each of them can be inspected in a later processing stage. One family of the existing segmentation methods is based on the idea of watersheding, and it has shown promising results in practice.However,due to the over-segmentation issue,this technique has experienced poor performance in various applications,such as inhomogeneous background and connected targets. To solve this problem,we present a combination of two classical techniques to handle this issue.In the first step,a mean shift filter is used to eliminate the inhomogeneous background, where entropy is used to be a converging criterion. Secondly,a color gradient algorithm is used in order to detect the most significant edges, and a marked watershed transform is applied to segment cluttered objects out of the previous processing stages. The proposed framework is capable of compromising among execution time, usability, efficiency and segmentation outcome in analyzing ring die pellets. The experimental results demonstrate that the proposed approach is effectiveness and robust.
Resumo:
In this paper, we present a unified approach to an energy-efficient variation-tolerant design of Discrete Wavelet Transform (DWT) in the context of image processing applications. It is to be noted that it is not necessary to produce exactly correct numerical outputs in most image processing applications. We exploit this important feature and propose a design methodology for DWT which shows energy quality tradeoffs at each level of design hierarchy starting from the algorithm level down to the architecture and circuit levels by taking advantage of the limited perceptual ability of the Human Visual System. A unique feature of this design methodology is that it guarantees robustness under process variability and facilitates aggressive voltage over-scaling. Simulation results show significant energy savings (74% - 83%) with minor degradations in output image quality and avert catastrophic failures under process variations compared to a conventional design. © 2010 IEEE.
Resumo:
This paper presents a new perceptual watermarking model for Discrete Shearlet transform (DST). DST provides the optimal representation [10] of the image features based on multi-resolution and multi-directional analysis. This property can be exploited on for watermark embedding to achieve the watermarking imperceptibility by introducing the human visual system using Chou’s model. In this model, a spatial JND profile is adapted to fit the sub-band structure. The combination of DST and the Just-Noticeable Distortion (JND) profile improves the levels of robustness against certain attacks while minimizing the distortion; by assigning a visibility threshold of distortion to each DST sub-band coefficient in the case of grey scale image watermarking.
Resumo:
Field programmable gate array devices boast abundant resources with which custom accelerator components for signal, image and data processing may be realised; however, realising high performance, low cost accelerators currently demands manual register transfer level design. Software-programmable ’soft’ processors have been proposed as a way to reduce this design burden but they are unable to support performance and cost comparable to custom circuits. This paper proposes a new soft processing approach for FPGA which promises to overcome this barrier. A high performance, fine-grained streaming processor, known as a Streaming Accelerator Element, is proposed which realises accelerators as large scale custom multicore networks. By adopting a streaming execution approach with advanced program control and memory addressing capabilities, typical program inefficiencies can be almost completely eliminated to enable performance and cost which are unprecedented amongst software-programmable solutions. When used to realise accelerators for fast fourier transform, motion estimation, matrix multiplication and sobel edge detection it is shown how the proposed architecture enables real-time performance and with performance and cost comparable with hand-crafted custom circuit accelerators and up to two orders of magnitude beyond existing soft processors.
Resumo:
In this paper, the fractional Fourier transform (FrFT) is applied to the spectral bands of two component mixture containing oxfendazole and oxyclozanide to provide the multicomponent quantitative prediction of the related substances. With this aim in mind, the modulus of FrFT spectral bands are processed by the continuous Mexican Hat family of wavelets, being denoted by MEXH-CWT-MOFrFT. Four modulus sets are obtained for the parameter a of the FrFT going from 0.6 up to 0.9 in order to compare their effects upon the spectral and quantitative resolutions. Four linear regression plots for each substance were obtained by measuring the MEXH-CWT-MOFrFT amplitudes in the application of the MEXH family to the modulus of the FrFT. This new combined powerful tool is validated by analyzing the artificial samples of the related drugs, and it is applied to the quality control of the commercial veterinary samples.