913 resultados para IEA-R1 REACTOR


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a 2-D hybrid model, the authors have found that external currents play an important role in the plasma parameters in the reactor. The plasma density, temperature and electrostatic potential would be significantly influenced by the applied external currents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to develop the ultra-large scale integration(ULSI), low pressure and high density plasma apparatus are required for etching and deposit of thin films. To understand critical parameters such as the pressure, temperature, electrostatic potential and energy distribution of ions impacting on the wafer, it is necessary to understand how these parameters are influenced by the power input and neutral gas pressure. In the present work, a 2-D hybrid electron fluid-particle ion model has been developed to simulate one of the high density plasma sources-an Electron Cyclotron Resonance (ECR) plasma system with various pressures and power inputs in a non-uniform magnetic field. By means of numerical simulation, the energy distributions of argon ion impacting on the wafer are obtained and the plasma density, electron temperature and plasma electrostatic potential are plotted in 3-D. It is concluded that the plasma density depends mainly on both the power input and neutral gas pressure. However, the plasma potential and electron temperature can hardly be affected by the power input, they seem to be primarily dependent on the neutral gas pressure. The comparison shows that the simulation results are qualitatively in good agreement with the experiment measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mathematical model is presented for the numerical simulation of the flow, temperature, and concentration fields in an rf plasma chemical reactor. The simulation is performed assuming chemical equilibrium. The extent of validity of this assumption is discussed. The system considered is the reaction of SiCl4 and NH3 for the production of Si3N4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A kinetic model has been developed for the prediction of the concentration gelds in an rf plasma reactor. A sample calculation for a SiCl4/H2 system is then performed. The model considers the mixing processes along with the kinetics of seven reactions involving the decomposition of these reactants. The results obtained are compared to those assuming chemical equilibrium. The predictions indicate that an equilibrium assumption will result in lower predicted temperature fields in the reactor. Furthermore, for the chemical system considered here, while differences exist between the concentration fields obtained by the two models, the differences are not substantial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, an AC plasma arc reactorwithworkinggasofhydrogen is applied to destruct chemicalagents. The temperature attains 6000℃ in the arc area and over 2000℃ in the other space of the crucible. The Arsenic (As) contained chemical agent -Adams (DM) used in the experiment, was added into the plasmareactorwith the additives: Fe, CaO, and SiO_2, etc. Pyrolysis and destructionofchemicalagents occurs very quickly in the high-temperature reactor. Gaseous hydrogen was injected into the reactor to form a reductive environment, to reduce the formation of As_2O_3 etc. In the bottom of the crucible, the solid residues of toxicant and additives were melted and formed as vitrified slag. The off-gas was treated by a wet scrubber. The amounts of arsenic distributed in the off-gas, vitrified slag, waste water and solids (soot) were measured. The result shows DM is completely destructed in the plasmareactor. The Arsenic content in the off-gas, vitrified slag, waste water and soot are 0.052 mg/l, 3.0%, 10.44 mg/l, and 5.1% respectively, which will be disposed as the pollutant matters. The results show that the plasma technology is an environmentally friendly technology to destruct chemicals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various hazardous wastes with additives have been vitrified to investigate the formation mechanism of the glassy slag by a 30 kW DC plasma-arc reactor developed by the Institute of Mechanics, Chinese Academy of Sciences. The average temperature in the reaction area is controlled at 1500°C. The chemical compositions of three sorts of fly ashes are analyzed by XRF (X-Ray Fluorescence). Fly ashes with vitrifying additives can be vitrified to form glassy slag, which show that the ratio of the whole oxygen ions to the whole network former ions in glass (R) is appropriate in the range of 2~3 to form durable vitrified slag. In this experiment, the arc power is controlled below 5 kW to inhibit waste evaporation. To enhance the effects of heat transfer to wastes, ferrous powder has been added into the graphite crucible, which aggregates as ingot below the molten silicate after vitrification. The slag fails to form glass if the quenching rate is less than 1 K/min. Therefore, the slag will break into small chips due to the sharp quenching rate, which is more than 100 K/sec.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is a theoretical work on the space-time dynamic behavior of a nuclear reactor without feedback. Diffusion theory with G-energy groups is used.

In the first part the accuracy of the point kinetics (lumped-parameter description) model is examined. The fundamental approximation of this model is the splitting of the neutron density into a product of a known function of space and an unknown function of time; then the properties of the system can be averaged in space through the use of appropriate weighting functions; as a result a set of ordinary differential equations is obtained for the description of time behavior. It is clear that changes of the shape of the neutron-density distribution due to space-dependent perturbations are neglected. This results to an error in the eigenvalues and it is to this error that bounds are derived. This is done by using the method of weighted residuals to reduce the original eigenvalue problem to that of a real asymmetric matrix. Then Gershgorin-type theorems .are used to find discs in the complex plane in which the eigenvalues are contained. The radii of the discs depend on the perturbation in a simple manner.

In the second part the effect of delayed neutrons on the eigenvalues of the group-diffusion operator is examined. The delayed neutrons cause a shifting of the prompt-neutron eigenvalue s and the appearance of the delayed eigenvalues. Using a simple perturbation method this shifting is calculated and the delayed eigenvalues are predicted with good accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Techniques are developed for estimating activity profiles in fixed bed reactors and catalyst deactivation parameters from operating reactor data. These techniques are applicable, in general, to most industrial catalytic processes. The catalytic reforming of naphthas is taken as a broad example to illustrate the estimation schemes and to signify the physical meaning of the kinetic parameters of the estimation equations. The work is described in two parts. Part I deals with the modeling of kinetic rate expressions and the derivation of the working equations for estimation. Part II concentrates on developing various estimation techniques.

Part I: The reactions used to describe naphtha reforming are dehydrogenation and dehydroisomerization of cycloparaffins; isomerization, dehydrocyclization and hydrocracking of paraffins; and the catalyst deactivation reactions, namely coking on alumina sites and sintering of platinum crystallites. The rate expressions for the above reactions are formulated, and the effects of transport limitations on the overall reaction rates are discussed in the appendices. Moreover, various types of interaction between the metallic and acidic active centers of reforming catalysts are discussed as characterizing the different types of reforming reactions.

Part II: In catalytic reactor operation, the activity distribution along the reactor determines the kinetics of the main reaction and is needed for predicting the effect of changes in the feed state and the operating conditions on the reactor output. In the case of a monofunctional catalyst and of bifunctional catalysts in limiting conditions, the cumulative activity is sufficient for predicting steady reactor output. The estimation of this cumulative activity can be carried out easily from measurements at the reactor exit. For a general bifunctional catalytic system, the detailed activity distribution is needed for describing the reactor operation, and some approximation must be made to obtain practicable estimation schemes. This is accomplished by parametrization techniques using measurements at a few points along the reactor. Such parametrization techniques are illustrated numerically with a simplified model of naphtha reforming.

To determine long term catalyst utilization and regeneration policies, it is necessary to estimate catalyst deactivation parameters from the the current operating data. For a first order deactivation model with a monofunctional catalyst or with a bifunctional catalyst in special limiting circumstances, analytical techniques are presented to transform the partial differential equations to ordinary differential equations which admit more feasible estimation schemes. Numerical examples include the catalytic oxidation of butene to butadiene and a simplified model of naphtha reforming. For a general bifunctional system or in the case of a monofunctional catalyst subject to general power law deactivation, the estimation can only be accomplished approximately. The basic feature of an appropriate estimation scheme involves approximating the activity profile by certain polynomials and then estimating the deactivation parameters from the integrated form of the deactivation equation by regression techniques. Different bifunctional systems must be treated by different estimation algorithms, which are illustrated by several cases of naphtha reforming with different feed or catalyst composition.