893 resultados para High Power Semiconductor Laser Arrays


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we conduct a theoretical analysis of the design, fabrication, and performance measurement of high-power and high-brightness strained quantum-well lasers emitting at 0.98 mum, The material system of interest consists of an Al-free InGaAs-InGaAsP active region and AlGaAs cladding layers. Some key parameters of the laser structure are theoretically analyzed, and their effects on the laser performance are discussed. The laser material is grown by metal-organic chemical vapor deposition and demonstrates high quality with low-threshold current density, high internal quantum efficiency, and extremely low internal loss. High-performance broad-area multimode and ridge-waveguide single-mode laser devices are fabricated. For 100-mum-wide stripe lasers having a cavity length of 800 mum, a high slope efficiency of 1.08 W-A, a low vertical beam divergence of 34 degrees, a high output power of over 4.45 W, and a very high characteristic temperature coefficient of 250 K were achieved. Lifetime tests performed at 1.2-1.3 W (12-13 mW/mum) demonstrates reliable performance. For 4-mum-wide ridge waveguide single-mode laser devices, a maximum output power of 394 mW and fundamental mode power up to 200 mW with slope efficiency of 0.91 mW/mum are obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-speed and high-power InGaAsP/lnP selective proton-bombarded buried crescent (SPB-BC) lasers with optical field attenuation regions were reported. The defect of proton bombardment can not affect the lifetime of the SPB-BC laser because the optical field attenuation region obstructs the growth and propagation of defects. A CW light output over 115 mW was achieved at room temperature using a 500 mu m long cavity SPB-BC laser. The 3 dB bandwidth was 8.5 GHz, and the lifetime was about 8.5 x 10(5) h. The capacitance of four kinds of current blocking structures was first measured in our experiment, and the results shown that the capacitance of proton-bombarded pnpn structure was not only less than that of pnpn current blocking structure, but also less than that of semi-insulating Fe-InP structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The layer structure of GaInP/AlGaInP quantum well laser diodes (LDs) was grown on GaAs substrate using low-pressure metalorganic chemical vapor deposition (LP-MOCVD) technique. In order to improve the catastrophic optical damage (COD) level of devices, a nonabsorbing window (NAW), which was based on Zn diffusion-induced quantum well intermixing, was fabricated near the both ends of the cavities. Zn diffusions were respectively carried out at 480, 500, 520, 540, and 580 Celsius degree for 20 minutes. The largest energy blue shift of 189.1 meV was observed in the window regions at 580 Celsius degree. When the blue shift was 24.7 meV at 480 Celsius degree, the COD power for the window LD was 86.7% higher than the conventional LD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By etching a second-order grating directly into the Al-free optical waveguide region of a ridgewaveguide(RW) AlGaInAs/AlGaAs distributed feedback(DFB) laser diode,a front facet output power of 30mW is obtained at about 820nm with a single longitudinal mode. The Al-free grating surface permits the re-growth of a high-quality cladding layer that yields excellent device performance. The threshold current of these laser diodes is 57mA,and the slope efficiency is about 0.32mW/mA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High power and high-slope efficiency 650nm band real-refractive-index ridge waveguide AlGaInP laser diodes with compressive strained MQW active layer are formed by pure Ar ion beam etching process.Symmetric laser mesas with high perpendicularity,which are impossible to obtain by traditional wet etching method due to the use of a 15°-misoriented substrate,are obtained by this dry etching method.Laser diodes with 4μm wide,600μm long and 10%/90% coat are fabricated.The typical threshold current of these devices is 46mA at room temperature,and a stable fundamental-mode operation over 40mW is obtained.Very high slope efficiency of 1.4W/A at 10mW and 1.1W/A at 40mW are realized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a practical coupling system, a cylindrical microlens is used to collimate the emission of a high powerlaser diode (LD) in the dimension perpendicular to the junction plane. Using passive alignment, the LD isplaced in the focus of the cylindrical microlens generally, regardless of the performance of the multimodeoptical fiber and the LD. In this paper, a more complete analysis is arrived at by ray-tracing technique,by which the angle θ of the ray after refraction is computed as a function of the angle θo of the ray beforerefraction. The focus of the cylindrical microlens is not always the optimal position of the LD. In fact, inorder to achieve a higher coupling efficiency, the optimal distance from the LD to the cylindrical microlensis dependent on not only the radius R and the index of refraction n of the cylindrical microlens, but alsothe divergence angle of the LD in the dimension perpendicular to the junction plane and the numericalaperture (NA) of the multimode optical fiber. The results of this discussion are in good agreement withexperimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 940 nm Al-free active region laser diodes and bars with a broad waveguide were designed and fabricated. The stuctures were grown by metal organic chemical vapour deposition. The devices show excellent performances. The maximum output power of 6.7 W in the 100 f^m broad-area laser diodes has been measured, and is 2. 5 times higher than that in the Al-containing active region laser diodes with a narrow waveguide and 1. 7 times higher than that in Al-free active region laser diodes with a narrow waveguide. The 19 % fill-factor laser diode bars emit 33 W, and they can operate at 15W with low degradation rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 808nm laser diodes with a broad waveguide are designed and fabricated. The thickness of the Al_(0.35)-Ga_(0.65)As waveguide is increased to 0.9μm. In order to suppress the super modes, the thickness of the Al_(0.55)Ga_(0.45)As cladding layers is reduced to only 0.7μm while keeping the transverse radiation losses of the fundamental mode below 0.2cm~(-1). The structures are grown by metal organic chemical vapour deposition. The devices show excellent performances. The maximum output power of 10.2W in the 100μm broad-area laser diodes is obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A single longitudinal mode and narrow line width external cavity semiconductor laser is proposed. It is constructed with a semiconductor laser, collimator, a flame grating, and current and temperature control systems. The one facet of semiconductor laser is covered by high transmission film, and another is covered by high reflection film. The flame grating is used as light feedback element to select the mode of the semiconductor laser. The temperature of the constructed external cavity semiconductor laser is stabilized in order of 10(-3)degreesC by temperature control system. The experiments have been carried out and the results obtained-the spectral fine width of this laser is compressed to be less than 1.4MHz from its original line-width of more than 1200GHz and the output stability (including power and mode) is remarkably enhanced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum dot (QD) lasers are expected to have superior properties over conventional quantum well lasers due to a delta-function like density of states resulting from three dimensional quantum confinements. QD lasers can only be realized till significant improvements in uniformity of QDs with free of defects and increasing QD density as well in recent years. In this paper, we first briefly give a review on the techniques for preparing QDs, and emphasis on strain induced self-organized quantum dot growth. Secondly, self-organized In(Ga)As/GaAs, InAlAs/GaAlAs and InAs/InAlAs Qds grown on both GaAs and InP substrates with different orientations by using MBE and the Stranski-Krastanow (SK) growth mode at our labs are presented. Under optimizing the growth conditions such as growth temperature, V/III ratio, the amount of InAs, InxGa1-xAs, InxAl1-xAs coverage, the composition x etc., controlling the thickness of the strained layers, for example, just slightly larger than the critical thickness and choosing the substrate orientation or patterned substrates as well, the sheet density of ODs can reach as high as 10(11) cm(-2), and the dot size distribution is controlled to be less than 10% (see Fig. 1). Those are very important to obtain the lower threshold current density (J(th)) of the QD Laser. How to improve the dot lateral ordering and the dot vertical alignment for realizing lasing from the ground states of the QDs and further reducing the Jth Of the QD lasers are also described in detail. Thirdly based on the optimization of the band engineering design for QD laser and the structure geometry and growth conditions of QDs, a 1W continuous-wave (cw) laser operation of a single composite sheet or vertically coupled In(Ga)As quantum dots in a GaAs matrix (see Fig. 2) and a larger than 10W semiconductor laser module consisted nineteen QD laser diodes are demonstrated. The lifetime of the QD laser with an emitting wavelength around 960nm and 0.613W cw operation at room temperature is over than 3000 hrs, at this point the output power was only reduced to 0.83db. This is the best result as we know at moment. Finally the future trends and perspectives of the QD laser are also discussed.