962 resultados para Hierarchical systems
Resumo:
We present a systematic, practical approach to developing risk prediction systems, suitable for use with large databases of medical information. An important part of this approach is a novel feature selection algorithm which uses the area under the receiver operating characteristic (ROC) curve to measure the expected discriminative power of different sets of predictor variables. We describe this algorithm and use it to select variables to predict risk of a specific adverse pregnancy outcome: failure to progress in labour. Neural network, logistic regression and hierarchical Bayesian risk prediction models are constructed, all of which achieve close to the limit of performance attainable on this prediction task. We show that better prediction performance requires more discriminative clinical information rather than improved modelling techniques. It is also shown that better diagnostic criteria in clinical records would greatly assist the development of systems to predict risk in pregnancy.
Resumo:
This paper describes work performed as part of the U.K. Alvey sponsored Voice Operated Database Inquiry System (VODIS) project in the area of intelligent dialogue control. The principal aims of the work were to develop a habitable interface for the untrained user; to investigate the degree to which dialogue control can be used to compensate for deficiencies in recognition performance; and to examine the requirements on dialogue control for generating natural speech output. A data-driven methodology is described based on the use of frames in which dialogue topics are organized hierarchically. The concept of a dynamically adjustable scope is introduced to permit adaptation to recognizer performance and the use of historical and hierarchical contexts are described to facilitate the construction of contextually relevant output messages. © 1989.
Resumo:
It is useful in systems that must support multiple applications with various temporal requirements to allow application-specific policies to manage resources accordingly. However, there is a tension between this goal and the desire to control and police possibly malicious programs. The Java-based Sensor Execution Environment (SXE) in snBench presents a situation where such considerations add value to the system. Multiple applications can be run by multiple users with varied temporal requirements, some Real-Time and others best effort. This paper outlines and documents an implementation of a hierarchical and configurable scheduling system with which different applications can be executed using application-specific scheduling policies. Concurrently the system administrator can define fairness policies between applications that are imposed upon the system. Additionally, to ensure forward progress of system execution in the face of malicious or malformed user programs, an infrastructure for execution using multiple threads is described.
Resumo:
Mapping novel terrain from sparse, complex data often requires the resolution of conflicting information from sensors working at different times, locations, and scales, and from experts with different goals and situations. Information fusion methods help resolve inconsistencies in order to distinguish correct from incorrect answers, as when evidence variously suggests that an object's class is car, truck, or airplane. The methods developed here consider a complementary problem, supposing that information from sensors and experts is reliable though inconsistent, as when evidence suggests that an objects class is car, vehicle, or man-made. Underlying relationships among objects are assumed to be unknown to the automated system of the human user. The ARTMAP information fusion system uses distributed code representations that exploit the neural network's capacity for one-to-many learning in order to produce self-organizing expert systems that discover hierarchial knowledge structures. The system infers multi-level relationships among groups of output classes, without any supervised labeling of these relationships. The procedure is illustrated with two image examples.
Resumo:
Classifying novel terrain or objects front sparse, complex data may require the resolution of conflicting information from sensors working at different times, locations, and scales, and from sources with different goals and situations. Information fusion methods can help resolve inconsistencies, as when evidence variously suggests that an object's class is car, truck, or airplane. The methods described here consider a complementary problem, supposing that information from sensors and experts is reliable though inconsistent, as when evidence suggests that an object's class is car, vehicle, and man-made. Underlying relationships among objects are assumed to be unknown to the automated system or the human user. The ARTMAP information fusion system used distributed code representations that exploit the neural network's capacity for one-to-many learning in order to produce self-organizing expert systems that discover hierarchical knowledge structures. The system infers multi-level relationships among groups of output classes, without any supervised labeling of these relationships.
Resumo:
Classifying novel terrain or objects from sparse, complex data may require the resolution of conflicting information from sensors woring at different times, locations, and scales, and from sources with different goals and situations. Information fusion methods can help resolve inconsistencies, as when eveidence variously suggests that and object's class is car, truck, or airplane. The methods described her address a complementary problem, supposing that information from sensors and experts is reliable though inconsistent, as when evidence suggests that an object's class is car, vehicle, and man-made. Underlying relationships among classes are assumed to be unknown to the autonomated system or the human user. The ARTMAP information fusion system uses distributed code representations that exploit the neural network's capacity for one-to-many learning in order to produce self-organizing expert systems that discover hierachical knowlege structures. The fusion system infers multi-level relationships among groups of output classes, without any supervised labeling of these relationships. The procedure is illustrated with two image examples, but is not limited to image domain.
Resumo:
This paper introduces a new class of predictive ART architectures, called Adaptive Resonance Associative Map (ARAM) which performs rapid, yet stable heteroassociative learning in real time environment. ARAM can be visualized as two ART modules sharing a single recognition code layer. The unit for recruiting a recognition code is a pattern pair. Code stabilization is ensured by restricting coding to states where resonances are reached in both modules. Simulation results have shown that ARAM is capable of self-stabilizing association of arbitrary pattern pairs of arbitrary complexity appearing in arbitrary sequence by fast learning in real time environment. Due to the symmetrical network structure, associative recall can be performed in both directions.
Resumo:
The powerful general Pacala-Hassell host-parasitoid model for a patchy environment, which allows host density–dependent heterogeneity (HDD) to be distinguished from between-patch, host density–independent heterogeneity (HDI), is reformulated within the class of the generalized linear model (GLM) family. This improves accessibility through the provision of general software within well–known statistical systems, and allows a rich variety of models to be formulated. Covariates such as age class, host density and abiotic factors may be included easily. For the case where there is no HDI, the formulation is a simple GLM. When there is HDI in addition to HDD, the formulation is a hierarchical generalized linear model. Two forms of HDI model are considered, both with between-patch variability: one has binomial variation within patches and one has extra-binomial, overdispersed variation within patches. Examples are given demonstrating parameter estimation with standard errors, and hypothesis testing. For one example given, the extra-binomial component of the HDI heterogeneity in parasitism is itself shown to be strongly density dependent.
A policy-definition language and prototype implementation library for policy-based autonomic systems
Resumo:
This paper presents work towards generic policy toolkit support for autonomic computing systems in which the policies themselves can be adapted dynamically and automatically. The work is motivated by three needs: the need for longer-term policy-based adaptation where the policy itself is dynamically adapted to continually maintain or improve its effectiveness despite changing environmental conditions; the need to enable non autonomics-expert practitioners to embed self-managing behaviours with low cost and risk; and the need for adaptive policy mechanisms that are easy to deploy into legacy code. A policy definition language is presented; designed to permit powerful expression of self-managing behaviours. The language is very flexible through the use of simple yet expressive syntax and semantics, and facilitates a very diverse policy behaviour space through both hierarchical and recursive uses of language elements. A prototype library implementation of the policy support mechanisms is described. The library reads and writes policies in well-formed XML script. The implementation extends the state of the art in policy-based autonomics through innovations which include support for multiple policy versions of a given policy type, multiple configuration templates, and meta-policies to dynamically select between policy instances and templates. Most significantly, the scheme supports hot-swapping between policy instances. To illustrate the feasibility and generalised applicability of these tools, two dissimilar example deployment scenarios are examined. The first is taken from an exploratory implementation of self-managing parallel processing, and is used to demonstrate the simple and efficient use of the tools. The second example demonstrates more-advanced functionality, in the context of an envisioned multi-policy stock trading scheme which is sensitive to environmental volatility
Resumo:
We address the issue of autonomic management in hierarchical component-based distributed systems. The long term aim is to provide a modelling framework for autonomic management in which QoS goals can be defined, plans for system adaptation described and proofs of achievement of goals by (sequences of) adaptations furnished. Here we present an early step on this path. We restrict our focus to skeleton-based systems in order to exploit their well-defined structure. The autonomic cycle is described using the Orc system orchestration language while the plans are presented as structural modifications together with associated costs and benefits. A case study is presented to illustrate the interaction of managers to maintain QoS goals for throughput under varying conditions of resource availability.
Resumo:
SoC systems are now being increasingly constructed using a hierarchy of subsystems or silicon Intellectual Property (IP) cores. The key challenge is to use these cores in a highly efficient manner which can be difficult as the internal core structure may not be known. A design methodology based on synthesizing hierarchical circuit descriptions is presented. The paper employs the MARS synthesis scheduling algorithm within the existing IRIS synthesis flow and details how it can be enhanced to allow for design exploration of IP cores. It is shown that by accessing parameterised expressions for the datapath latencies in the cores, highly efficient FPGA solutions can be achieved. Hardware sharing at both the hierarchical and flattened levels is explored for a normalized lattice filter and results are presented.