Self-Organizing Information Fusion and Hierarchical Knowledge Discovery: A New Framework Using Artmap Neural Networks
Data(s) |
14/11/2011
14/11/2011
01/12/2004
|
---|---|
Resumo |
Classifying novel terrain or objects from sparse, complex data may require the resolution of conflicting information from sensors woring at different times, locations, and scales, and from sources with different goals and situations. Information fusion methods can help resolve inconsistencies, as when eveidence variously suggests that and object's class is car, truck, or airplane. The methods described her address a complementary problem, supposing that information from sensors and experts is reliable though inconsistent, as when evidence suggests that an object's class is car, vehicle, and man-made. Underlying relationships among classes are assumed to be unknown to the autonomated system or the human user. The ARTMAP information fusion system uses distributed code representations that exploit the neural network's capacity for one-to-many learning in order to produce self-organizing expert systems that discover hierachical knowlege structures. The fusion system infers multi-level relationships among groups of output classes, without any supervised labeling of these relationships. The procedure is illustrated with two image examples, but is not limited to image domain. Air Force Office of Scientific Research (F49620-01-1-0423); National Geospatial-Intelligence Agency (NMA 201-01-1-2016, NMA 501-03-1-2030); National Science Foundation (SBE-0354378, DGE-0221680); Office of Naval Research (N00014-01-1-0624); Department of Homeland Security |
Identificador | |
Idioma(s) |
en_US |
Publicador |
Boston University Center for Adaptive Systems and Department of Cognitive and Neural Systems |
Relação |
BU CAS/CNS Technical Reports;CAS/CNS-TR-2004-016 |
Direitos |
Copyright 2004 Boston University. Permission to copy without fee all or part of this material is granted provided that: 1. The copies are not made or distributed for direct commercial advantage; 2. the report title, author, document number, and release date appear, and notice is given that copying is by permission of BOSTON UNIVERSITY TRUSTEES. To copy otherwise, or to republish, requires a fee and / or special permission. Boston University Trustees |
Palavras-Chave | #ARTMAP #Adaptive Resonance Theory (ART) #Information fusion #Pattern recognition #Data mining #Remote sensing #Distributed coding #Association rules #Multi-sensor fusion |
Tipo |
Technical Report |