896 resultados para Handheld devices
Resumo:
Cardiovascular diseases are a leading cause of death throughout the developed world. With the demand for donor hearts far exceeding the supply, a bridge-to-transplant or permanent solution is required. This is currently achieved with ventricular assist devices (VADs), which can be used to assist the left ventricle (LVAD), right ventricle (RVAD), or both ventricles simultaneously (BiVAD). Earlier generation VADs were large, volume-displacement devices designed for temporary support until a donor heart was found. The latest generation of VADs use rotary blood pump technology which improves device lifetime and the quality of life for end stage heart failure patients. VADs are connected to the heart and greater vessels of the patient through specially designed tubes called cannulae. The inflow cannulae, which supply blood to the VAD, are usually attached to the left atrium or ventricle for LVAD support, and the right atrium or ventricle for RVAD support. Few studies have characterized the haemodynamic difference between the two cannulation sites, particularly with respect to rotary RVAD support. Inflow cannulae are usually made of metal or a semi-rigid polymer to prevent collapse with negative pressures. However suction, and subsequent collapse, of the cannulated heart chamber can be a frequent occurrence, particularly with the relatively preload insensitive rotary blood pumps. Suction events may be associated with endocardial damage, pump flow stoppages and ventricular arrhythmias. While several VAD control strategies are under development, these usually rely on potentially inaccurate sensors or somewhat unreliable inferred data to estimate preload. Fixation of the inflow cannula is usually achieved through suturing the cannula, often via a felt sewing ring, to the cannulated chamber. This technique extends the time on cardiopulmonary bypass which is associated with several postoperative complications. The overall objective of this thesis was to improve the placement and design of rotary LVAD and RVAD inflow cannulae to achieve enhanced haemodynamic performance, reduced incidence of suction events, reduced levels of postoperative bleeding and a faster implantation procedure. Specific objectives were: * in-vitro evaluation of LVAD and RVAD inflow cannula placement, * design and in-vitro evaluation of a passive mechanism to reduce the potential for heart chamber suction, * design and in-vitro evaluation of a novel suture-less cannula fixation device. In order to complete in-vitro evaluation of VAD inflow cannulae, a mock circulation loop (MCL) was developed to accurately replicate the haemodynamics in the human systemic and pulmonary circulations. Validation of the MCL’s haemodynamic performance, including the form and magnitude of pressure, flow and volume traces was completed through comparisons of patient data and the literature. The MCL was capable of reproducing almost any healthy or pathological condition, and provided a useful tool to evaluate VAD cannulation and other cardiovascular devices. The MCL was used to evaluate inflow cannula placement for rotary VAD support. Left and right atrial and ventricular cannulation sites were evaluated under conditions of mild and severe heart failure. With a view to long term LVAD support in the severe left heart failure condition, left ventricular inflow cannulation was preferred due to improved LVAD efficiency and reduced potential for thrombus formation. In the mild left heart failure condition, left atrial cannulation was preferred to provide an improved platform for myocardial recovery. Similar trends were observed with RVAD support, however to a lesser degree due to a smaller difference in right atrial and ventricular pressures. A compliant inflow cannula to prevent suction events was then developed and evaluated in the MCL. As rotary LVAD or RVAD preload was reduced, suction events occurred in all instances with a rigid inflow cannula. Addition of the compliant segment eliminated suction events in all instances. This was due to passive restriction of the compliant segment as preload dropped, thus increasing the VAD circuit resistance and decreasing the VAD flow rate. Therefore, the compliant inflow cannula acted as a passive flow control / anti-suction system in LVAD and RVAD support. A novel suture-less inflow cannula fixation device was then developed to reduce implantation time and postoperative bleeding. The fixation device was evaluated for LVAD and RVAD support in cadaveric animal and human hearts attached to a MCL. LVAD inflow cannulation was achieved in under two minutes with the suture-less fixation device. No leakage through the suture-less fixation device – myocardial interface was noted. Continued development and in-vivo evaluation of this device may result in an improved inflow cannulation technique with the potential for off-bypass insertion. Continued development of this research, in particular the compliant inflow cannula and suture-less inflow cannulation device, will result in improved postoperative outcomes, life span and quality of life for end-stage heart failure patients.
Resumo:
The invention relates to a method for monitoring user activity on a mobile device, comprising an input and an output unit, comprising the following steps preferably in the following order: detecting and / or logging user activity on said input unit, identifying a foreground running application, hashing of a user-interface-element management list of the foreground running application, and creating a screenshot comprising items displayed on said input unit. The invention also relates to a method for analyzing user activity at a server, comprising the following step: obtaining at least one of an information about detected and / or logged user activity, an information about a foreground running application, a hashed user-interface-element management list and a screenshot from a mobile device. Further, a computer program product is provided, comprising one or more computer readable media having computer executable instructions for performing the steps of at least one of the aforementioned methods.
Resumo:
This paper describes a risk model for estimating the likelihood of collisions at low-exposure railway level crossings, demonstrating the effect that differences in safety integrity can have on the likelihood of a collision. The model facilitates the comparison of safety benefits between level crossings with passive controls (stop or give-way signs) and level crossings that have been hypothetically upgraded with conventional or low-cost warning devices. The scenario presented illustrates how treatment of a cross-section of level crossings with low cost devices can provide a greater safety benefit compared to treatment with conventional warning devices for the same budget.
Resumo:
BACKGROUND: Transcatheter closure of patent foramen ovale (PFO) has rapidly evolved as the preferred management strategy for the prevention of recurrent cerebrovascular events in patients with cryptogenic stroke and presumed paradoxical embolus. There is limited outcome data in patients treated with this therapy particularly for the newer devices. METHODS: Data from medical records, catheter, and echocardiography databases on 70 PFO procedures performed was collected prospectively. RESULTS: The cohort consisted of 70 patients (mean age 43.6 years, range 19 to 77 years), of whom 51% were male. The indications for closure were cryptogenic cerebrovascular accident (CVA) or transient ischemic attack (TIA) in 64 (91%) and peripheral emboli in two (2.8%) patients and cryptogenic ST-elevation myocardial infarction in one (1.4%), refractory migraine in one (1.4%), decompression sickness in one (1.4%), and orthodeoxia in one (1.4%) patient, respectively. All patients had demonstrated right-to-left shunting on bubble study. The procedures were guided by intracardiac echocardiography in 53%, transesophageal echocardiography in 39%, and the remainder by transthoracic echo alone. Devices used were the Amplatzer PFO Occluder (AGA Medical) (sizes 18-35 mm) in 49 (70%) and the Premere device (St. Jude Medical) in 21 (30%). In-hospital complications consisted of one significant groin hematoma with skin infection. Echocardiographic follow-up at 6 months revealed that most patients had no or trivial residual shunt (98.6%), while one patient (1.4%) had a mild residual shunt. At a median of 11 months' follow-up (range 1 month to 4.3 years), no patients (0%) experienced further CVA/TIAs or paradoxical embolic events during follow-up. CONCLUSION: PFO causing presumed paradoxical embolism can be closed percutaneously with a low rate of significant residual shunting and very few complications. Recurrent index events are uncommon at medium-term (up to 4 years) follow-up.
Resumo:
This practice-led project has two outcomes: a collection of short stories titled 'Corkscrew Section', and an exegesis. The short stories combine written narrative with visual elements such as images and typographic devices, while the exegesis analyses the function of these graphic devices within adult literary fiction. My creative writing explores a variety of genres and literary styles, but almost all of the stories are concerned with fusing verbal and visual modes of communication. The exegesis adopts the interpretive paradigm of multimodal stylistics, which aims to analyse graphic devices with the same level of detail as linguistic analysis. Within this framework, the exegesis compares and extends previous studies to develop a systematic method for analysing how the interactions between language, images and typography create meaning within multimodal literature.
Resumo:
Two longitudinal experiments were conducted exploring emotional experiences with PIDs over six months including media and medial Portable Interactive Devices (PIDs). Results identifying the impact of negative social and personal interactions on the overall emotional experience as well as different task categories (Features, Functional, Mediation and Auxiliary) and their corresponding emotional responses have previously been reported [2,3,4,5]. This paper builds on these findings and presents the Designing for Evolving Emotional Experience (DE3) framework promoting positive (and deals with negative) emotional experiences with PIDs including a set of principles to better understand emotional experiences. To validate the DE3 framework a preliminary trial was conducted with five practicing industrial designers. The trial required them to consider initial design concepts using the DE3 framework followed by a questionnaire asking about their use of the framework for concept development. The trial aimed to analyse the effectiveness, efficiency and usefulness of the framework in assisting in the development of initial concepts for PIDs taking into account emotional experiences. Common themes regarding the framework are outlined including the ease of use, the effectiveness in focusing on the personal and social contexts and positive ratings regarding its use. Overall the feedback from the preliminary trial was encouraging with responses suggesting that the framework was accessible, rated highly and most importantly permitted designers to consider emotional experiences during concept development. The paper concludes with a discussion regarding the future development of the DE3 framework and the potential implications to design theory and the design discipline.
Resumo:
The use of mobile devices and social media technologies are becoming all-pervasive in society: they are both transformative and constant. The high levels of mobile device ownership and increased access to social media technologies enables the potential for ‘anytime, anywhere’ cooperation and collaboration in education. While recent reports into emerging technologies in higher education predict an increase in the use of mobile devices and social media technologies (Horizon Report, 2013), there is a lack of theory-based research to indicate how these technologies can be most effectively harnessed to support and enhance student learning and what the impacts of these technologies are on both students and educators. In response to the need to understand how these technologies can be better embraced within higher education, this study investigated how first year education students used mobile devices and social media technologies. More specifically, the study identified how students spent most of their time when connected online with mobile devices and social media technologies and whether the online connected time engaged them in their learning or whether it was a distraction.
Resumo:
The research seeks to understand the nature of law and justice students’ use of technology for their learning purposes. There is often an assumption made that all students have, and engage with, technology to the same degree. The research tests these assumptions by means of a survey conducted of first year law and justice students to determine their actual use of smart devices inside and outside classes. The analysis of results reveals that while the majority of respondents own at least one smart device; most rarely use their device for their learning purposes.
Resumo:
This paper discusses the methodology and design of the Cooperative Research Centre for Rail Innovation’s national low-cost level crossing trial programme currently being conducted in Australia. Three suppliers of innovative low-cost level crossing warning devices were chosen through a tendering and evaluation process. The paper outlines the acceptance criteria that were used to select the suppliers and describes the different types of train detection technologies and innovative cost- reduction solutions that are being tested as part of the trial. The trial is being hosted by three major railways in three different regions in Australia, where systems from the three suppliers have been installed parallel to a baseline conventional track-circuit based level crossing at each site. The paper discusses our experience to date, the trialling process and the challenges that the project has confronted in order to develop a nationally consistent trialling programme.
Resumo:
Purpose The use of intravascular devices is associated with a number of potential complications. Despite a number of evidence-based clinical guidelines in this area, there continues to be nursing practice discrepancies. This study aims to examine nursing practice in a cancer care setting to identify nursing practice and areas for improvement respective to best available evidence. Methods A point prevalence survey was undertaken in a tertiary cancer care centre in Queensland, Australia. On a randomly selected day, four nurses assessed intravascular device related nursing practices and collected data using a standardized survey tool. Results 58 inpatients (100%) were assessed. Forty-eight (83%) had a device in situ, comprising 14 Peripheral Intravenous Catheters (29.2%), 14 Peripherally Inserted Central Catheters (29.2%), 14 Hickman catheters (29.2%) and six Port-a-Caths (12.4%). Suboptimal outcomes such as incidences of local site complications, incorrect/inadequate documentation, lack of flushing orders, and unclean/non intact dressings were observed. Conclusions This study has highlighted a number of intravascular device related nursing practice discrepancies compared with current hospital policy. Education and other implementation strategies can be applied to improve nursing practice. Following education strategies, it will be valuable to repeat this survey on a regular basis to provide feedback to nursing staff and implement strategies to improve practice. More research is required to provide evidence to clinical practice with regards to intravascular device related consumables, flushing technique and protocols.
Resumo:
Voltage unbalance is a major power quality problem in low voltage residential feeders due to the random location and rating of single-phase rooftop photovoltaic cells (PV). In this paper, two different improvement methods based on the application of series (DVR) and parallel (DSTATCOM) custom power devices are investigated to improve the voltage unbalance problem in these feeders. First, based on the load flow analysis carried out in MATLAB, the effectiveness of these two custom power devices is studied vis-à-vis the voltage unbalance reduction in urban and semi-urban/rural feeders containing rooftop PVs. Their effectiveness is studied from the installation location and rating points of view. Later, a Monte Carlo based stochastic analysis is carried out to investigate their efficacy for different uncertainties of load and PV rating and location in the network. After the numerical analyses, a converter topology and control algorithm is proposed for the DSTATCOM and DVR for balancing the network voltage at their point of common coupling. A state feedback control, based on pole-shift technique, is developed to regulate the voltage in the output of the DSTATCOM and DVR converters such that the voltage balancing is achieved in the network. The dynamic feasibility of voltage unbalance and profile improvement in LV feeders, by the proposed structure and control algorithm for the DSTATCOM and DVR, is verified through detailed PSCAD/EMTDC simulations.
Resumo:
Energy auditing is an effective but costly approach for reducing the long-term energy consumption of buildings. When well-executed, energy loss can be quickly identified in the building structure and its subsystems. This then presents opportunities for improving energy efficiency. We present a low-cost, portable technology called "HeatWave" which allows non-experts to generate detailed 3D surface temperature models for energy auditing. This handheld 3D thermography system consists of two commercially available imaging sensors and a set of software algorithms which can be run on a laptop. The 3D model can be visualized in real-time by the operator so that they can monitor their degree of coverage as the sensors are used to capture data. In addition, results can be analyzed offline using the proposed "Spectra" multispectral visualization toolbox. The presence of surface temperature data in the generated 3D model enables the operator to easily identify and measure thermal irregularities such as thermal bridges, insulation leaks, moisture build-up and HVAC faults. Moreover, 3D models generated from subsequent audits of the same environment can be automatically compared to detect temporal changes in conditions and energy use over time.
Resumo:
Despite the predictions, the true potential of Nb2O5 for electrochromic applications has yet to be fully realized. In this work, three-dimensional (3D) compact and well-ordered nanoporous Nb2O5 films are synthesized by the electrochemical anodization of niobium thin films. These films are formed using RF sputtering and then anodized in an electrolyte containing ethylene glycol, ammonium fluoride, and small water content (4%) at 50 °C which resulted in low embedded impurities within the structure. Characterization of the anodized films shows that a highly crystalline orthorhombic phase of Nb2O5 is obtained after annealing at 450 °C. The 3D structure provides a template consisting of a large concentration of active sites for ion intercalation, while also ensuring low scattering directional paths for electrons. These features enhance the coloration efficiency to 47.0 cm2 C?1 (at 550 nm) for a 500 nm thick film upon Li+ ion intercalation. Additionally, the Nb2O5 electrochromic device shows a high bleached state transparency and large optical modulation.
Resumo:
We introduce the idea of geo-locking through a mobile phone based photo sharing application called Picalilly (figure 1). Using its geo-locking feature, Picalilly allows its users to manually define geographical boundaries for sharing photos -- limiting sharing within user-defined boundaries as well as facilitating open sharing between strangers within such boundaries. To explore the potential of geo-locking, we carried out a small scale field trial of Picalilly involving two groups of students, who were part of a two-week long introduction program at a university. Our preliminary results show that Picalilly facilitated 1) sharing of 'places' and 2) localized explorations.