147 resultados para BISTABILITY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiple color states have been realized in single unit cell using double electrochromic (EC) reaction. The precise control of bistability in EC compounds which can maintain several colors on the two separated electrodes allows this new type of pixel to be realized. The specific electrical driving gives a way to maintain both sides in the reduced EC states and this colors overlapping in the vertical view direction can achieve the black state. The four color states (G, B, W, BK) in one cell/pixel can make a valuable progress to achieve a high quality color devices such like electronic paper, outdoor billboard, smart window and flexible display using external light source. © 2012 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silicon is known to be a very good material for the realization of high-Q, low-volume photonic cavities, but at the same it is usually considered as a poor material for nonlinear optical functionalities like second-harmonic generation, because its second-order nonlinear susceptibility vanishes in the dipole approximation. In this work we demonstrate that nonlinear optical effects in silicon nanocavities can be strongly enhanced and even become macroscopically observable. We employ photonic crystal nanocavities in silicon membranes that are optimized simultaneously for high quality factor and efficient coupling to an incoming beam in the far field. Using a low-power, continuous-wave laser at telecommunication wavelengths as a pump beam, we demonstrate simultaneous generation of second- and third harmonics in the visible region, which can be observed with a simple camera. The results are in good agreement with a theoretical model that treats third-harmonic generation as a bulk effect in the cavity region, and second-harmonic generation as a surface effect arising from the vertical hole sidewalls. Optical bistability is also observed in the silicon nanocavities and its physical mechanisms (optical, due to two-photon generation of free carriers, as well as thermal) are investigated. © 2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Switching between two modes of operation is a common property of biological systems. In continuous-time differential equation models, this is often realised by bistability, i.e. the existence of two asymptotically stable steadystates. Several biological models are shown to exhibit delayed switching, with a pronounced transient phase, in particular for near-threshold perturbations. This study shows that this delay in switching from one mode to the other in response to a transient input is reflected in local properties of an unstable saddle point, which has a one dimensional unstable manifold with a significantly slower eigenvalue than the stable ones. Thus, the trajectories first approximatively converge to the saddle point, then linger along the saddle's unstable manifold before quickly approaching one of the stable equilibria. ©2010 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mode competitions between modes with different output coupling efficiencies can result in optical bistability under certain asymmetric nonlinear gain. For a GaInAsP/InP equilateral triangle microlaser with the side length of 10 mu m, the drop of the output power with the increase of the injection current is observed corresponding to transverse mode transitions. Furthermore, the measured laser spectra up to 270 K show that lasing modes coexist with the wavelength interval of 39 nm at 240 K. The emission at 5.2 THz can be expected by the mode frequency beating with the 39 nm interval.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports that the structures of AlGaAs/InGaAs high electron mobility transistor (HEMT) and AlAs/GaAs resonant tunnelling diode (RTD) are epitaxially grown by molecular beam epitaxy ( MBE) in turn on a GaAs substrate. An Al0.24Ga0.76As chair barrier layer, which is grown adjacent to the top AlAs barrier, helps to reduce the valley current of RTD. The peak-to-valley current ratio of fabricated RTD is 4.8 and the transconductance for the 1-mu m gate HEMT is 125mS/mm. A static inverter which consists of two RTDs and a HEMT is designed and fabricated. Unlike a conventional CMOS inverter, the novel inverter exhibits self-latching property.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports that lnAs/In0.53Ga0.47As/AlAs resonant tunnelling diodes have been grown on InP substrates by molecular beam epitaxy. Peak to valley current ratio of these devices is 17 at 300K. A peak current density of 3kA/cm(2) has been obtained for diodes with AlAs barriers of ten monolayers, and an In0.53Ga0.47As well of eight monolayers with four monolayers of InAs insert layer. The effects of growth interruption for smoothing potential barrier interfaces have been investigated by high resolution transmission electron microscope.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molecular beam epitaxy is employed to manufacture self-assembled InAs/AlAs quantum-dot resonant tunneling diodes. The resonant tunneling current is superimposed on the thermal current, and together they make up the total electron transport in devices. Steps in current-voltage characteristics and peaks in capacitance-voltage characteristics are explained as electron resonant tunneling via quantum dots at 77 or 300 K, and thus resonant tunneling is observed at room temperature in III-V quantum-dot materials. Hysteresis loops in the curves are attributed to hot electron injection/emission process of quantum dots, which indicates the concomitant charging/discharging effect. (c) 2006 The Electrochemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated the Wannier-Stark effect in GaAs/GaAl1-xAs superlattices under electric fields by photocurrent spectroscopy measurements in the range of temperatures 10-300 K. The linewidth of the Oh Stark-ladder exciton was found to increase significantly along with an increase in peak intensity when the electric field increases. We present a mechanism based on an enhanced interface roughness scattering of electronic states due to Wannier-Stark localization in order to explain this increased broadening with electric field. This electric-field-related scattering mechanism will weaken the negative differential conductance effects in superlattices predicted by Esaki and Tsu.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By using a transfer-matrix method on the basis of two-dimensional (2D) Bloch sums in accordance with a tight-binding scheme, a self-consistent calculation on the resonant tunneling in asymmetric double-barrier structures is presented, in which contributions to resonant tunneling from both three-dimensional (3D) electrons in the contacts and 2D electrons in the spacer or accumulation layers are considered simultaneously. The charge buildup effect on the current versus voltage (I-V) curves is evaluated systematically, showing quantitatively how it results in the I-V bistability and enhanced differences between I-V curves for positive and negative bias in an asymmetric double-barrier structure. Special attention is focused on the interaction between 3D-2D and 2D-2D resonant-tunneling processes, including the suppression of 2D-2D resonant tunneling by the charge buildup in the well accompanying the 3D-2D resonant tunneling. The effects of the emitter doping condition (doping concentration, spacer thickness) on the presence of two types of quasi-2D levels in the emitter accumulation layers, and on the formation of a potential bulge in the emitter region, are discussed in detail in relation to the tunneling process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Within the framework of the single-band effective-mass envelope-function theory, the effect of electric field on the electronic structures of pyramidal quantum dot is investigated. Taking the Coulomb interaction between the heavy holes and electron into account, the quantum confined Stark shift of the exciton as functions of the strength and direction of applied electric field and the size of the quantum dot are obtained. An interesting asymmetry of Stark shifts around the zero field is found. (C) 1997 Elsevier Science Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With contributions from both three-dimensional (3D) electrons in heavily doped contacts and 2D electrons in the accumulation layer, a self-consistent calculation based on effective mass theory is presented for studying the anomalous behaviour of the quasi-bound levels in the accumulation layer and that in the central well of an asymmetric double barrier structure (DBS). By choosing the thickness of the incident barrier properly, it is revealed that these two quasi-bound levels may merge into a unique bound level in the off-resonance regime which shows a very good 2D nature in contrast to the conventional picture for level crossing. An evident intrinsic I-V bistability is also shown. It is noticeable that the effect of charge build-up in the central well is so strong that the electric field in the incident barrier even decreases when the applied bias increases within the resonant region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A rewritable polymer memory device based on gold nanoparticle doped poly (N-vinylcarbazole) (PVK), which can be easily fabricated by simple spin coating, has been described. An electrical bistable phenomenon is observed in the current-voltage characteristics of this device, and it is found that the electrical bistability is repeatable by proper writing voltage and erasing voltage. The unique behavior of the devices provides an interesting approach such that doping nanoparticles in polymer can be used to realize high performance nanovolatile polymer memory devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We studied a simple gene regulatory network, the toggle switch. Specifically, we examined the means and statistical fluctuations in numbers of proteins. We found that when omega, the ratio of rates of protein-gene unbinding to protein degradation, was between similar to 10(-3) and similar to 10, the fluctuations were much larger than those we would have expected from Poisson statistics. In addition, we examined characteristic time values for system relaxation and found both that they increased with omega and that they have significant phase transition effects, with a secondary time scale appearing near the boundary between bistable and other phases. Last, we discuss the bistability of the toggle switch.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Memory effects in single-layer organic light-emitting devices based on Sm3+, Gd3+, and Eu3+ rare earth complexes were realized. The device structure was indium-tin-oxide (ITO)/3,4-poly(ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT)/Poly(N-vinyl carbazole) (PVK): rare earth complex/LiF/Ca/Ag. It was found experimentally that all the devices exhibited two distinctive bistable conductivity states in current-voltage characteristics by applying negative starting voltage, and more than 10(6) write-read-erase-reread cycles were achieved without degradation. Our results indicate that the rare earth organic complexes are promising materials for high-density, low-cost memory application besides the potential application as organic light-emitting materials in display devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Under natural viewing conditions, a single depthful percept of the world is consciously seen. When dissimilar images are presented to corresponding regions of the two eyes, binocular rivalyr may occur, during which the brain consciously perceives alternating percepts through time. How do the same brain mechanisms that generate a single depthful percept of the world also cause perceptual bistability, notably binocular rivalry? What properties of brain representations correspond to consciously seen percepts? A laminar cortical model of how cortical areas V1, V2, and V4 generate depthful percepts is developed to explain and quantitatively simulate binocualr rivalry data. The model proposes how mechanisms of cortical developement, perceptual grouping, and figure-ground perception lead to signle and rivalrous percepts. Quantitative model simulations include influences of contrast changes that are synchronized with switches in the dominant eye percept, gamma distribution of dominant phase durations, piecemeal percepts, and coexistence of eye-based and stimulus-based rivalry. The model also quantitatively explains data about multiple brain regions involved in rivalry, effects of object attention on switching between superimposed transparent surfaces, and monocular rivalry. These data explanations are linked to brain mechanisms that assure non-rivalrous conscious percepts. To our knowledge, no existing model can explain all of these phenomena.